دورية أكاديمية

Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy.

التفاصيل البيبلوغرافية
العنوان: Role of Microgliosis and NLRP3 Inflammasome in Parkinson's Disease Pathogenesis and Therapy.
المؤلفون: de Araújo FM; Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain.; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., Cuenca-Bermejo L; Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain., Fernández-Villalba E; Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain., Costa SL; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil. costasl@ufba.br., Silva VDA; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil. vdsilva@ufba.br., Herrero MT; Clinical and Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, Campus Mare Nostrum, University of Murcia, Murcia, Spain. mtherrer@um.es.
المصدر: Cellular and molecular neurobiology [Cell Mol Neurobiol] 2022 Jul; Vol. 42 (5), pp. 1283-1300. Date of Electronic Publication: 2021 Jan 02.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8200709 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6830 (Electronic) Linking ISSN: 02724340 NLM ISO Abbreviation: Cell Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York : Plenum Press, c1981-
مواضيع طبية MeSH: Inflammasomes* , Parkinson Disease*/pathology, Humans ; Inflammation/pathology ; Microglia/pathology ; NLR Family, Pyrin Domain-Containing 3 Protein
مستخلص: Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.)
References: Abdullah R, Basak I, Patil KS, Alves G, Larsen JP, Møller SG (2015) Parkinson’s disease and age: the obvious but largely unexplored link. Exp Gerontol 68:33–38. (PMID: 2526176410.1016/j.exger.2014.09.014)
Abi Nahed R et al (2019) NLRP7 is increased in human idiopathic fetal growth restriction and plays a critical role in trophoblast differentiation. J Mol Med 97:355–367. https://doi.org/10.1007/s00109-018-01737-x. (PMID: 10.1007/s00109-018-01737-x30617930)
Aguilera M, Darby T, Melgar S (2014) The complex role of inflammasomes in the pathogenesis of inflammatory bowel diseases: lessons learned from experimental models vol 25. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2014.04.003. (PMID: 10.1016/j.cytogfr.2014.04.00324803013)
Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161. (PMID: 23307732443163410.1126/science.1227901)
Anderson SR, Vetter ML (2019) Developmental roles of microglia: a window into mechanisms of disease. Dev Dyn 248:98–117. (PMID: 30444278)
Annese V et al (2013) Evidence of oligodendrogliosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Neuropathol Appl Neurobiol 39:132–143. https://doi.org/10.1111/j.1365-2990.2012.01271.x. (PMID: 10.1111/j.1365-2990.2012.01271.x22443457)
Annese V et al (2015) Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Struct Funct 220:703–727. https://doi.org/10.1007/s00429-014-0718-8. (PMID: 10.1007/s00429-014-0718-824558048)
Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R (2017) The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci 10:191. (PMID: 28674485547449410.3389/fnmol.2017.00191)
Ariza D et al (2010) Intranigral LPS administration produces dopamine, glutathione but not behavioral impairment in comparison to MPTP and 6-OHDA neurotoxin models of Parkinson’s disease. Neurochem Res 35:1620–1627. (PMID: 2058256810.1007/s11064-010-0222-3)
Arlehamn CSL et al (2020) α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun 11:1–11. (PMID: 10.1038/s41467-019-13993-7)
Arotcarena ML et al (2020) Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain 143:1462–1475. https://doi.org/10.1093/brain/awaa096. (PMID: 10.1093/brain/awaa09632380543)
Barcia C et al (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–409. (PMID: 1509537010.1002/glia.20015)
Barcia C et al (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142–e142. (PMID: 21472005312205410.1038/cddis.2011.17)
Barcia C et al (2013) Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. J Neuroimmunol 261:60–66. https://doi.org/10.1016/j.jneuroim.2013.05.001. (PMID: 10.1016/j.jneuroim.2013.05.00123759319)
Barnum CJ, Tansey MG (2012) Neuroinflammation and non-motor symptoms: the dark passenger of Parkinson’s disease? Curr Neurol Neurosci Rep 12:350–358. https://doi.org/10.1007/s11910-012-0283-6. (PMID: 10.1007/s11910-012-0283-622580742)
Bayraktar R, Bertilaccio MTS, Calin GA (2019) The interaction between two worlds: microRNAs and Toll-like receptors. Front Immunol 10:1053. (PMID: 31139186652759610.3389/fimmu.2019.01053)
Bernier L-P, York EM, Kamyabi A, Choi HB, Weilinger NL, MacVicar BA (2020) Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 11(1):17. (PMID: 10.1038/s41467-020-15267-z)
Bhidayasiri R, Martinez-Martin P (2017) Clinical assessments in Parkinson’s disease: scales and monitoring. International review of neurobiology, vol 132. Elsevier, New York, pp 129–182.
Bohush A, Niewiadomska G, Filipek A (2018) Role of mitogen activated protein kinase signaling in Parkinson’s disease. Int J Mol Sci 19:2973. (PMID: 621353710.3390/ijms19102973)
Bourdenx M et al (2020) Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. Sci Adv. https://doi.org/10.1126/sciadv.aaz9165. (PMID: 10.1126/sciadv.aaz9165324265027220339)
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134. https://doi.org/10.1007/s00441-004-0956-9. (PMID: 10.1007/s00441-004-0956-915338272)
Bullon P, Navarro JM (2017) Inflammasome as a key pathogenic mechanism in endometriosis. Curr Drug Targets 18:997–1002. https://doi.org/10.2174/1389450117666160709013850. (PMID: 10.2174/138945011766616070901385027397068)
Böttcher C et al (2019) Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 22:78–90. (PMID: 3055947610.1038/s41593-018-0290-2)
Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146. (PMID: 25217959417736910.1038/ng.3089)
Chatterjee K et al (2020) Inflammasome and α-synuclein in Parkinson’s disease: a cross-sectional study. J Neuroimmunol 338:577089. (PMID: 3170445310.1016/j.jneuroim.2019.577089)
Chaudhuri KR et al (2006) International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov Disord 21(916):923.
Chavarría-Smith J, Vance RE (2015) The NLRP 1 inflammasomes. Immunol Rev 265:22–34. (PMID: 2587928110.1111/imr.12283)
Chen L, Xue L, Zheng J, Tian X, Zhang Y, Tong Q (2019) PPARß/δ agonist alleviates NLRP3 inflammasome-mediated neuroinflammation in the MPTP mouse model of Parkinson’s disease. Behav Brain Res 356:483–489. (PMID: 2988584910.1016/j.bbr.2018.06.005)
Cheng J et al (2020a) Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy. https://doi.org/10.1080/15548627.2020.1719723. (PMID: 10.1080/15548627.2020.1719723332804988525924)
Cheng X, Xu S, Zhang C, Qin K, Yan J, Shao X (2020b) The BRCC3 regulated by Cdk5 promotes the activation of neuronal NLRP3 inflammasome in Parkinson’s disease models. Biochem Biophys Res Commun 522:647–654. (PMID: 3178724010.1016/j.bbrc.2019.11.141)
Chu JQ et al (2016) Production of IL-1β and inflammasome with up-regulated expressions of NOD-like receptor related genes in Korean. J Parasitol 54:711–717. https://doi.org/10.3347/kjp.2016.54.6.711. (PMID: 10.3347/kjp.2016.54.6.711)
Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M (2013) Triggering of inflammasome by aggregated α–synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8:e55375. (PMID: 23383169356126310.1371/journal.pone.0055375)
Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. (PMID: 28226226816793810.1146/annurev-immunol-051116-052358)
Costa T, Fernandez-Villalba E, Izura V, Lucas-Ochoa AM, Menezes-Filho NJ, Santana RC, de Oliveira MD, Araújo FM, Estrada C, Silva V, Costa SL, Herrero MT (2020) Combined 1-deoxynojirimycin and ibuprofen treatment decreases microglial activation, phagocytosis and dopaminergic degeneration in MPTP-treated mice. J Neuroimmun Pharmacol. https://doi.org/10.1007/s11481-020-09925-8. (PMID: 10.1007/s11481-020-09925-8)
Cuenca N et al (2005) Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson’s disease. J Comp Neurol 493:261–273. (PMID: 1625502710.1002/cne.20761)
Cummings JR et al (2010) The genetics of NOD-like receptors in Crohn’s disease. Tissue Antigens 76:48–56. https://doi.org/10.1111/j.1399-0039.2010.01470.x. (PMID: 10.1111/j.1399-0039.2010.01470.x20403135)
Dalbiès-Tran R, Papillier P, Pennetier S, Uzbekova S, Monget P (2005) Bovine mater-like NALP9 is an oocyte marker gene. Mol Reprod Dev 71:414–421. https://doi.org/10.1002/mrd.20298. (PMID: 10.1002/mrd.2029815892040)
Daniele SG, Béraud D, Davenport C, Cheng K, Yin H, Maguire-Zeiss KA (2015) Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 8:45. (PMID: 10.1126/scisignal.2005965)
Daniels MJ et al (2016) Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat Commun 7:12504. https://doi.org/10.1038/ncomms12504. (PMID: 10.1038/ncomms12504275098754987536)
Das R, Sharma S (2016) Cognitive impairment associated with parkinson’s disease: role of mitochondria. Curr Neuropharmacol 14:584–592. (PMID: 26725887498174110.2174/1570159X14666160104142349)
Davis BK et al (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186:1333–1337. https://doi.org/10.4049/jimmunol.1003111. (PMID: 10.4049/jimmunol.100311121191067)
de Almeida L et al (2015) The PYRIN domain-only protein POP1 inhibits inflammasome assembly and ameliorates inflammatory disease. Immunity 43:264–276. (PMID: 26275995466600510.1016/j.immuni.2015.07.018)
De Stefano ME, Herrero MT (2017) The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol 155:36–56. (PMID: 2753022210.1016/j.pneurobio.2016.08.002)
Del Rio-Hortega P (1919) El tercer elemento de los centros nerviosos. I. La microglia en estado nor-mal. II. Intervencion de la microglia en los procesos patologicos. III. Nat Prob Micro Boll Soc Esp Biol 9:69–120.
Docherty LE et al (2015) Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun 6:8086. https://doi.org/10.1038/ncomms9086. (PMID: 10.1038/ncomms908626323243)
Doorn KJ, Moors T, Drukarch B, van de Berg WD, Lucassen PJ, van Dam A-M (2014) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun 2:90. (PMID: 250994834224021)
Dorsey ER et al (2018a) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study. Lancet Neurol 17:939–953. (PMID: 10.1016/S1474-4422(18)30295-3)
Dorsey E, Sherer T, Okun MS, Bloem BR (2018b) The emerging evidence of the Parkinson pandemic. J Parkinson’s Dis 8(S3):S8.
Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 10(1043):1057.
Duncan JA, Canna SW (2018) The NLRC 4 inflammasome. Immunol Rev 281:115–123. (PMID: 29247997589704910.1111/imr.12607)
Eibl C et al (2012) Structural and functional analysis of the NLRP4 pyrin domain. Biochemistry 51:7330–7341. https://doi.org/10.1021/bi3007059. (PMID: 10.1021/bi300705922928810)
Eisenbarth SC et al (2012) NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484:510–513. https://doi.org/10.1038/nature11012. (PMID: 10.1038/nature11012225386153340615)
Fan Z, Liang Z, Yang H, Pan Y, Zheng Y, Wang X (2017) Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia. J Neuroinflamm 14:256. (PMID: 10.1186/s12974-017-1036-x)
Fellner L et al (2013) Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61:349–360. (PMID: 23108585356890810.1002/glia.22437)
Fiorentino L, Stehlik C, Oliveira V, Ariza ME, Godzik A, Reed JC (2002) A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta. J Biol Chem 277:35333–35340. https://doi.org/10.1074/jbc.M200446200. (PMID: 10.1074/jbc.M20044620012093792)
Frederick Lo C, Ning X, Gonzales C, Ozenberger BA (2008) Induced expression of death domain genes NALP1 and NALP5 following neuronal injury. Biochem Biophys Res Commun 366:664–669. https://doi.org/10.1016/j.bbrc.2007.11.174. (PMID: 10.1016/j.bbrc.2007.11.17418068672)
Fu Y et al (2019) NLRC3 expression in dendritic cells attenuates CD4. EMBO J 38:e101397. https://doi.org/10.15252/embj.2018101397. (PMID: 10.15252/embj.2018101397312901626694220)
Garré JM, Silva HM, Lafaille JJ, Yang G (2017) CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat Med 23:714. (PMID: 28504723559023210.1038/nm.4340)
Gay NJ, Gangloff M, Weber AN (2006) Toll-like receptors as molecular switches. Nat Rev Immunol 6:693–698. (PMID: 1691751010.1038/nri1916)
Ghimire L, Paudel S, Jin L, Jeyaseelan S (2020) The NLRP6 inflammasome in health and disease. Mucosal Immunol 13:388–398. https://doi.org/10.1038/s41385-020-0256-z. (PMID: 10.1038/s41385-020-0256-z319884687493825)
Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci 29:13543–13556. (PMID: 19864567286256610.1523/JNEUROSCI.4144-09.2009)
Gil-Martínez A-L et al (2019) Local gastrointestinal injury exacerbates inflammation and dopaminergic cell death in parkinsonian mice. Neurotox Res 35:918–930. (PMID: 3079669110.1007/s12640-019-0010-z)
Gil-Martínez AL, Cuenca L, Estrada C, Sánchez-Rodrigo C, Fernández-Villalba E, Herrero MT (2018) Unexpected exacerbation of neuroinflammatory response after a combined therapy in old Parkinsonian mice. Front Cell Neurosci 12:451. (PMID: 30559650628424210.3389/fncel.2018.00451)
Giráldez-Pérez RM, Antolín-Vallespín M, Muñoz MD, Sánchez-Capelo A (2014) Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol Commun 2:176. (PMID: 25497491427281210.1186/s40478-014-0176-9)
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(918):934.
Goetz CG, Pal G (2014) Initial management of Parkinson’s disease. BMJ. https://doi.org/10.1136/bmj.g6258. (PMID: 10.1136/bmj.g625825527341)
Goldman JG, Postuma R (2014) Premotor and non-motor features of Parkinson’s disease. Curr Opin Neurol 27:434. (PMID: 24978368418167010.1097/WCO.0000000000000112)
Gordon R et al (2018) Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Trans Med 10:4066. (PMID: 10.1126/scitranslmed.aah4066)
Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687. (PMID: 26121197451903510.1038/nm.3893)
Ha HJ, Park HH (2020) Crystal structure of the human NLRP9 pyrin domain reveals a bent N-terminal loop that may regulate inflammasome assembly. FEBS Lett. https://doi.org/10.1002/1873-3468.13866. (PMID: 10.1002/1873-3468.1386633230844)
Hafner-Bratkovič I, Pelegrín P (2018) Ion homeostasis and ion channels in NLRP3 inflammasome activation and regulation. Curr Opin Immun 52:8–17. (PMID: 10.1016/j.coi.2018.03.010)
Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. (PMID: 1796565910.1038/nn1997)
Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK (2020) Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 35:20–33. (PMID: 3168031810.1002/mds.27874)
Harris J et al (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286:9587–9597. https://doi.org/10.1074/jbc.M110.202911. (PMID: 10.1074/jbc.M110.202911212282743058966)
He Y, Hara H, Núñez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41:1012–1021. (PMID: 27669650512393910.1016/j.tibs.2016.09.002)
Heneka MT, McManus RM, Latz E (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19:610–621. (PMID: 3020633010.1038/s41583-018-0055-7)
Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63(189):211.
Herrero MT, Morelli M (2017) Multiple mechanisms of neurodegeneration and progression. Prog Neurobiol 155:1–1. (PMID: 2862960010.1016/j.pneurobio.2017.06.001)
Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. (PMID: 1929692110.1016/S1474-4422(09)70062-6)
Hou X, Watzlawik JO, Fiesel FC, Springer W (2020) Autophagy in Parkinson’s disease. J Mol Biol 432:2651–2672. (PMID: 32061929721112610.1016/j.jmb.2020.01.037)
Howrylak JA, Nakahira K (2017) Inflammasomes: key mediators of lung immunity. Ann Rev Physiol 79:471–494. (PMID: 10.1146/annurev-physiol-021115-105229)
Hung Y-F, Chen C-Y, Shih Y-C, Liu H-Y, Huang C-M, Hsueh Y-P (2018) Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. J Cell Biol 217:2727–2742. (PMID: 29777026608092610.1083/jcb.201712113)
Imamura R et al (2010) Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J Immunol 184:5874–5884. https://doi.org/10.4049/jimmunol.0900779. (PMID: 10.4049/jimmunol.090077920393137)
Jabir MS et al (2015) Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy 11:166–182. https://doi.org/10.4161/15548627.2014.981915. (PMID: 10.4161/15548627.2014.981915257007384502769)
Janowski AM, Sutterwala FS (2016) Atypical inflammasomes. Methods Mol Biol 1417(45):62. https://doi.org/10.1007/978-1-4939-3566-6_2. (PMID: 10.1007/978-1-4939-3566-6_2)
Javed H et al (2020) NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson’s disease. Int Immunopharmacol 83:106441. (PMID: 32259702725541610.1016/j.intimp.2020.106441)
Jiang H et al (2017) Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 214:3219–3238. https://doi.org/10.1084/jem.20171419. (PMID: 10.1084/jem.20171419290211505679172)
Jounai N, Kobiyama K, Shiina M, Ogata K, Ishii KJ, Takeshita F (2011) NLRP4 negatively regulates autophagic processes through an association with beclin1. J Immunol 186:1646–1655. https://doi.org/10.4049/jimmunol.1001654. (PMID: 10.4049/jimmunol.100165421209283)
Kalia L (2015) Lang A Parkinson’s disease. Lancet 386(9996):896–912. (PMID: 2590408110.1016/S0140-6736(14)61393-3)
Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134:314–326. (PMID: 2686934710.1111/ane.12563)
Karki R et al (2016) NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature 540:583–587. https://doi.org/10.1038/nature20597. (PMID: 10.1038/nature20597279515865468516)
Kastner A et al (1994) Decreased tyrosine hydroxylase content in the dopaminergic neurons of MPTP-intoxicated monkeys: effect of levodopa and GM1 ganglioside therapy. Ann Neurol 36:206–214. https://doi.org/10.1002/ana.410360213. (PMID: 10.1002/ana.4103602137914399)
Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121. (PMID: 2200260810.1038/nature10558)
Kazlauskaite A, Muqit MM (2015) PINK1 and Parkin–mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’s disease. FEBS J 282:215–223. (PMID: 2534584410.1111/febs.13127)
Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:3328. (PMID: 665142310.3390/ijms20133328)
Khare S et al (2014) The PYRIN domain–only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 15:343–353. (PMID: 24531343412378110.1038/ni.2829)
Kim C et al (2018) Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener 13:1–18. (PMID: 29310663575929110.1186/s13024-017-0233-5)
Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347. (PMID: 1695311210.1038/emm.2006.40)
Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflamm 14:1–18. (PMID: 10.1186/s12974-017-0871-0)
Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflamm 5:8. (PMID: 10.1186/1742-2094-5-8)
Koshimori Y et al (2015) Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS ONE 10:e0138721. (PMID: 26381267457515110.1371/journal.pone.0138721)
Kuchmiy AA, D’Hont J, Hochepied T, Lamkanfi M (2016) NLRP2 controls age-associated maternal fertility. J Exp Med 213:2851–2860. (PMID: 27881734515494510.1084/jem.20160900)
Labzin LI, Heneka MT, Latz E (2018) Innate immunity and neurodegeneration. Annu Rev Med 69:437–449. (PMID: 2910680510.1146/annurev-med-050715-104343)
Laliberte R, Perregaux D, Svensson L, Pazoles CJ, Gabel CA (1994) Tenidap modulates cytoplasmic pH and inhibits anion transport in vitro. II. Inhibition of IL-1 beta production from ATP-treated monocytes and macrophages. J Immunol 153:2168–2179. (PMID: 8051418)
Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157(1013):1022.
Lane JD, Korolchuk VI, Murray JT, Karabiyik C, Lee MJ, Rubinsztein DC (2017) Autophagy impairment in Parkinson’s disease. Essays Biochem 61(711):720.
Lang Y, Chu F, Shen D, Zhang W, Zheng C, Zhu J, Cui L (2018) Role of inflammasomes in neuroimmune and neurodegenerative diseases: a systematic review. Mediat Inflamm. https://doi.org/10.1155/2018/1549549. (PMID: 10.1155/2018/1549549)
Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. (PMID: 2370297810.1038/nri3452)
Lau A et al (2020) α-Synuclein strains target distinct brain regions and cell types. Nat Neurosci 23:21–31. (PMID: 3179246710.1038/s41593-019-0541-x)
Lee E et al (2019) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 26:213–228. (PMID: 2978607210.1038/s41418-018-0124-5)
Levy M et al (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428–1443. https://doi.org/10.1016/j.cell.2015.10.048. (PMID: 10.1016/j.cell.2015.10.048266380725665753)
Li R, Zhu S (2020) NLRP6 inflammasome. Mol Aspects Med. https://doi.org/10.1016/j.mam.2020.100859. (PMID: 10.1016/j.mam.2020.100859331606407904608)
Lim CK et al (2017) Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 155:76–95. https://doi.org/10.1016/j.pneurobio.2015.12.009. (PMID: 10.1016/j.pneurobio.2015.12.00927072742)
Lin K-M et al (2014) IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci 111:775–780. (PMID: 2437936010.1073/pnas.1320294111)
Lu Y, Li X, Liu S, Zhang Y, Zhang D (2018) Toll-like receptors and inflammatory bowel disease. Front Immunol 9:72. (PMID: 29441063579758510.3389/fimmu.2018.00072)
Macdonald R, Barnes K, Hastings C, Mortiboys H (2018) Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem Soc Trans 46:891–909. (PMID: 3002637110.1042/BST20170501)
Madore C, Yin Z, Leibowitz J, Butovsky O (2020) Microglia, lifestyle stress, and neurodegeneration. Immunity 52:222–240. (PMID: 31924476723482110.1016/j.immuni.2019.12.003)
Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265(6):21.
Mangan MS, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17:588. (PMID: 3002652410.1038/nrd.2018.97)
Mao Z, Liu C, Ji S, Yang Q, Ye H, Han H, Xue Z (2017) The NLRP3 inflammasome is involved in the pathogenesis of Parkinson’s disease in rats. Neurochem Res 42:1104–1115. (PMID: 2824733410.1007/s11064-017-2185-0)
Marinelli C et al (2015) Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. J Neuroinflamm 12:1–20. (PMID: 10.1186/s12974-015-0458-6)
Martinez EM et al (2017) Editor’s highlight: Nlrp3 is required for inflammatory changes and nigral cell loss resulting from chronic intragastric rotenone exposure in mice. Toxicol Sci 159:64–75. (PMID: 28903492583721010.1093/toxsci/kfx117)
Martinez-Martin P, Rodriguez-Blazquez C, Forjaz MJ, Kurtis MM, Skorvanek M (2017) Measurement of nonmotor symptoms in clinical practice. International review of neurobiology, vol 133. Elsevier, New York, pp 291–345.
Masuda T et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392. (PMID: 3076092910.1038/s41586-019-0924-x)
McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24(574):576.
McGeer PL, Yasojima K, McGeer EG (2002) Association of interleukin-1β polymorphisms with idiopathic Parkinson’s disease. Neurosci Lett 326:67–69. (PMID: 1205254010.1016/S0304-3940(02)00300-2)
Menzies FM et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034. (PMID: 2827935010.1016/j.neuron.2017.01.022)
Mitchell PS, Sandstrom A, Vance RE (2019) The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol 60:37–45. (PMID: 31121538680061210.1016/j.coi.2019.04.015)
Miyamoto A et al (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7(1):12.
Mu J et al (2019) Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet 56:471–480. (PMID: 3087723810.1136/jmedgenet-2018-105936)
Newman AB, Sanders JL, Kizer JR, Boudreau RM, Odden MC, Zeki Al Hazzouri A, Arnold AM (2016) Trajectories of function and biomarkers with age: the CHS All Stars Study. Int J Epidemiol 45:1135–1145. (PMID: 27272182584162710.1093/ije/dyw102)
Obeso J et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Dis 32:1264–1310. (PMID: 10.1002/mds.27115)
Paolicelli RC, Ferretti MT (2017) Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Front Synap Neurosci 9:9. (PMID: 10.3389/fnsyn.2017.00009)
Parkinson J (1817) An essay on the Shaking Palsy. Sherwood, Neely and Jones, London.
Parthasarathy G, Philipp MT (2018) Intracellular TLR7 is activated in human oligodendrocytes in response to Borrelia burgdorferi exposure. Neurosci Lett 671:38–42. (PMID: 29408631588971810.1016/j.neulet.2018.01.058)
Peng H, Liu F, Li W, Zhang W (2015) Knockdown of NLRP5 arrests early embryogenesis in sows. Anim Reprod Sci 163:151–156. https://doi.org/10.1016/j.anireprosci.2015.11.004. (PMID: 10.1016/j.anireprosci.2015.11.00426585895)
Platnich JM, Muruve DA (2019) NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys 670:4–14. (PMID: 3077225810.1016/j.abb.2019.02.008)
Poewe W et al (2017) Parkinson disease. Nat Rev Dis Primers 3(1):21. (PMID: 10.1038/nrdp.2017.13)
Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179:292–311. (PMID: 3158507710.1016/j.cell.2019.08.053)
Puspita L, Chung SY, Shim J-W (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 10:53. (PMID: 29183391570636810.1186/s13041-017-0340-9)
Py BF, Kim M-S, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331–338. (PMID: 2324643210.1016/j.molcel.2012.11.009)
Qiao C, Zhang L-X, Sun X-Y, Ding J-H, Lu M, Hu G (2017) Caspase-1 deficiency alleviates dopaminergic neuronal death via inhibiting caspase-7/AIF pathway in MPTP/p mouse model of Parkinson’s disease. Mol Neurob 54:4292–4302. (PMID: 10.1007/s12035-016-9980-5)
Radian AD, de Almeida L, Dorfleutner A, Stehlik C (2013) NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microb Infect 15:630–639. https://doi.org/10.1016/j.micinf.2013.04.001. (PMID: 10.1016/j.micinf.2013.04.001)
Ramirez-Zamora A, Molho E (2014) Treatment of motor fluctuations in Parkinson’s disease: recent developments and future directions. Expert Rev Neurother 14:93–103. (PMID: 2432872010.1586/14737175.2014.868306)
Rani L, Mondal AC (2020) Emerging concepts of mitochondrial dysfunction in Parkinson’s disease progression: pathogenic and therapeutic implications. Mitochondrion 50:25–34. (PMID: 3165475310.1016/j.mito.2019.09.010)
Ratsimandresy RA et al (2017) The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nat Commun 8:1–15. (PMID: 10.1038/ncomms15556)
Reichmann H (2017) Premotor diagnosis of Parkinson’s disease. Neurosci Bull 33(526):534.
Ren G et al (2019) ABRO1 promotes NLRP3 inflammasome activation through regulation of NLRP3 deubiquitination. EMBO J 38:e100376. (PMID: 30787184641844510.15252/embj.2018100376)
Rodriguez-Violante M et al (2017) Premotor symptoms and the risk of Parkinson’s disease: a case-control study in Mexican population. Clin Neurol Neurosurg 160:46–49. (PMID: 2864496910.1016/j.clineuro.2017.06.010)
Romberg N et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139. (PMID: 25217960417736710.1038/ng.3066)
Roussakis A-A, Piccini P (2018) Molecular Imaging of Neuroinflammation in Idiopathic Parkinson’s Disease. International review of neurobiology, vol 141. Elsevier, New York, pp 347–363.
Salamanca L, Mechawar N, Murai KK, Balling R, Bouvier DS, Skupin A (2019) MIC-MAC: an automated pipeline for high-throughput characterization and classification of three-dimensional microglia morphologies in mouse and human postmortem brain samples. Glia 67:1496–1509. (PMID: 30983036661778610.1002/glia.23623)
Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018. (PMID: 2888600710.1038/nm.4397)
Saresella M et al (2016) The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener 11:23. (PMID: 26939933477835810.1186/s13024-016-0088-1)
Sarkar S et al (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinson’s Dis 3:1–15. (PMID: 10.1038/s41531-016-0004-y)
Savage JC, Carrier M, Tremblay M-È (2019) Morphology of microglia across contexts of health and disease. microglia. Springer, New York, pp 13–26. (PMID: 10.1007/978-1-4939-9658-2_2)
Schapira AH, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18:435. (PMID: 2859290410.1038/nrn.2017.62)
Scheiblich H, Trombly M, Ramirez A, Heneka MT (2020) Neuroimmune connections in aging and neurodegenerative diseases. Trends Immunol 41:300–312. (PMID: 3214711310.1016/j.it.2020.02.002)
Schlachetzki J, Marxreiter F, Regensburger M, Kulinich A, Winner B, Winkler J (2014) Increased tyrosine hydroxylase expression accompanied by glial changes within the non-lesioned hemisphere in the 6-hydroxydopamine model of Parkinson’s disease. Restor Neurol Neurosci 32:447–462. (PMID: 24604006)
Schneider M et al (2012) The innate immune sensor NLRC3 attenuates toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nat Immunol 13:823–831. https://doi.org/10.1038/ni.2378. (PMID: 10.1038/ni.2378228637533721195)
Schrag A, Horsfall L, Walters K, Noyce A, Petersen I (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 14:57–64. (PMID: 2543538710.1016/S1474-4422(14)70287-X)
Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(821):832.
Segura-Aguilar J (2017) On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regener Res 12:897. (PMID: 10.4103/1673-5374.208560)
Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6:262. https://doi.org/10.3389/fphar.2015.00262. (PMID: 10.3389/fphar.2015.00262265941744633676)
Sharma D, Kanneganti T-D (2016) The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol 213:617–629. (PMID: 27325789491519410.1083/jcb.201602089)
Shen H et al (2020) New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog Neuro Psychopharmacol Biol Psychiatry 100:109884. (PMID: 10.1016/j.pnpbp.2020.109884)
Shi C-S et al (2012) Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263. (PMID: 22286270411681910.1038/ni.2215)
Shi J et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. (PMID: 2637500310.1038/nature15514)
Shim D-W, Lee K-H (2018) Posttranslational regulation of the NLR family pyrin domain-containing 3 inflammasome. Front Immunol 9:1054. (PMID: 29868015596810410.3389/fimmu.2018.01054)
Silvin A, Ginhoux F (2018) Microglia heterogeneity along a spatio–temporal axis: more questions than answers. Glia 66:2045–2057. (PMID: 3014432110.1002/glia.23458)
Simon DK, Tanner CM, Brundin P (2019) Parkinson Disease epidemiology, pathology, genetics and pathophysiology. Clin Geriatr Med. https://doi.org/10.1016/j.cger.2019.08.002. (PMID: 10.1016/j.cger.2019.08.002317336906905381)
Sominsky L, De Luca S, Spencer SJ (2018) Microglia: key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol 94:56–60. (PMID: 2919762610.1016/j.biocel.2017.11.012)
Song S et al (2019a) Loss of brain norepinephrine elicits neuroinflammation-mediated oxidative injury and selective caudo-rostral neurodegeneration. Mol Neurobiol 56:2653–2669. https://doi.org/10.1007/s12035-018-1235-1. (PMID: 10.1007/s12035-018-1235-130051353)
Song S et al (2019b) Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions. Brain Behav Immun 81:374–387. (PMID: 31247288675479810.1016/j.bbi.2019.06.034)
Su MY, Kuo CI, Chang CF, Chang CI (2013) Three-dimensional structure of human NLRP10/PYNOD pyrin domain reveals a homotypic interaction site distinct from its mouse homologue. PLoS ONE 8:e67843. https://doi.org/10.1371/journal.pone.0067843. (PMID: 10.1371/journal.pone.0067843238618193701624)
Subhramanyam CS, Wang C, Hu Q, Dheen ST (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Seminars in cell and developmental biology. Elsevier, New York, pp 112–120.
Sutterwala FS, Haasken S, Cassel SL (2014) Mechanism of NLRP3 inflammasome activation. Ann NY Acad Sci 1319:82. (PMID: 2484070010.1111/nyas.12458)
Taetzsch T et al (2015) Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 63:423–440. (PMID: 2533155910.1002/glia.22762)
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J (2020) Parkinson disease and the immune system—associations, mechanisms and therapeutics. Nat Rev Neurol 16(6):303–318. https://doi.org/10.1038/s41582-020-0344-4. (PMID: 10.1038/s41582-020-0344-432332985)
Tarakad A, Jankovic J (2017) Diagnosis and management of Parkinson’s disease. Seminars in neurology, vol 02. Thieme Medical Publishers, New York, pp 118–126.
Tay TL, Hagemeyer N, Prinz M (2016) The force awakens: insights into the origin and formation of microglia. Curr Opin Neurobiol 39:30–37. (PMID: 2710794610.1016/j.conb.2016.04.003)
Tian X, Pascal G, Monget P (2009) Evolution and functional divergence of NLRP genes in mammalian reproductive systems. BMC Evol Biol 9:202. https://doi.org/10.1186/1471-2148-9-202. (PMID: 10.1186/1471-2148-9-202196823722735741)
Tilburgs T, Meissner TB, Ferreira LM, Mulder A, Musunuru K, Ye J, Strominger JL (2017) NLRP2 is a suppressor of NF-ƙB signaling and HLA-C expression in human trophoblasts. Biol Reprod 96:831–842. (PMID: 28340094580376310.1093/biolre/iox009)
Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S (2018) Simvastatin inhibits activation of NADPH oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson disease models. Front Mol Neurosci 11:165. (PMID: 29872377597218410.3389/fnmol.2018.00165)
Torres-Platas SG et al (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflamm 11:12. (PMID: 10.1186/1742-2094-11-12)
Tsarouchas TM et al (2018) Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat Commun 9:1–17. (PMID: 10.1038/s41467-018-07036-w)
Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215. (PMID: 2016831810.1038/nri2725)
Tuladhar S, Kanneganti TD (2020) NLRP12 in innate immunity and inflammation. Mol Aspects Med. https://doi.org/10.1016/j.mam.2020.100887. (PMID: 10.1016/j.mam.2020.10088732838963)
Vanaja SK, Rathinam VA, Fitzgerald KA (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25:308–315. (PMID: 25639489440951210.1016/j.tcb.2014.12.009)
von Herrmann KM et al (2018) NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Parkinson’s Dis 4:1–9. (PMID: 10.1038/s41531-017-0038-9)
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(239):389.
Vlaar T, Kab S, Schwaab Y, Fréry N, Elbaz A, Moisan F (2018) Association of Parkinson’s disease with industry sectors: a French nationwide incidence study. Eur J Epidemiol 33:1101–1111. (PMID: 2973074610.1007/s10654-018-0399-3)
Wang Y et al (2014) Interleukin-1β induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS ONE 9:e110024. (PMID: 25313834419696210.1371/journal.pone.0110024)
Wang P et al (2015) Nlrp6 regulates intestinal antiviral innate immunity. Science 350:826–830. (PMID: 26494172492707810.1126/science.aab3145)
Wang L et al (2017) A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol 10:168. (PMID: 29065888565588010.1186/s13045-017-0526-8)
Wang Z et al (2020a) NLRP3 inflammasome and inflammatory diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4063562. (PMID: 10.1155/2020/4063562335055797790559)
Wang B, Bhattacharya M, Roy S, Tian Y, Yin Q (2020b) Immunobiology and structural biology of AIM2 inflammasome. Mol Aspects Med. https://doi.org/10.1016/j.mam.2020.100869. (PMID: 10.1016/j.mam.2020.100869331217377958902)
Wang Y, Hasegawa M, Imamura R, Kinoshita T, Kondo C, Konaka K, Suda T (2004) PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1. Int Immunol 16:777–786. https://doi.org/10.1093/intimm/dxh081. (PMID: 10.1093/intimm/dxh08115096476)
Wang B, Tian Y, Yin Q (2019) AIM2 inflammasome assembly and signaling. Structural immunology. Springer, New York, pp 143–155. (PMID: 10.1007/978-981-13-9367-9_7)
Westerveld GH, Korver CM, van Pelt AM, Leschot NJ, van der Veen F, Repping S, Lombardi MP (2006) Mutations in the testis-specific NALP14 gene in men suffering from spermatogenic failure. Hum Reprod 21:3178–3184. https://doi.org/10.1093/humrep/del293. (PMID: 10.1093/humrep/del29316931801)
Wlodarska M et al (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:1045–1059. (PMID: 24581500401764010.1016/j.cell.2014.01.026)
Wolf SA, Boddeke H, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. (PMID: 2795962010.1146/annurev-physiol-022516-034406)
Xiang H, Zhu F, Xu Z, Xiong J (2020) Role of inflammasomes in kidney diseases via both canonical and non-canonical pathways. Front Cell Develop Biol 8:106. (PMID: 10.3389/fcell.2020.00106)
Yan X et al (2017) Vanillin protects dopaminergic neurons against inflammation-mediated cell death by inhibiting ERK1/2, p38 and the NF-κB signaling pathway. Int J Mol Sci 18:389. (PMID: 534392410.3390/ijms18020389)
Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73. (PMID: 2559417510.1016/j.cell.2014.11.047)
Yang X, Lin G, Han Z, Chai J (2019a) Structural biology of NOD-like receptors. Structural immunology. Springer, New York, pp 119–141. (PMID: 10.1007/978-981-13-9367-9_6)
Yang Y, Wang H, Kouadir M, Song H, Shi F (2019b) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10:1–11. (PMID: 10.1038/s41419-018-1236-z)
Yao Y et al (2012) NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res 22:836–847. https://doi.org/10.1038/cr.2012.56. (PMID: 10.1038/cr.2012.56224914753346158)
Yap JKY, Pickard BS, Chan EWL, Gan SY (2019) The role of neuronal NLRP1 inflammasome in Alzheimer’s disease: bringing neurons into the neuroinflammation game. Mol Neurobiol 56:7741–7753. (PMID: 3111139910.1007/s12035-019-1638-7)
Yin Y et al (2020) A noncanonical role of NOD-like receptor NLRP14 in PGCLC differentiation and spermatogenesis. Proc Natl Acad Sci USA 117:22237–22248. https://doi.org/10.1073/pnas.2005533117. (PMID: 10.1073/pnas.2005533117328393167486727)
Zahid A, Li B, Kombe AJK, Jin T, Tao J (2019) Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol 10:2538. https://doi.org/10.3389/fimmu.2019.02538. (PMID: 10.3389/fimmu.2019.02538317498056842943)
Zaki MH et al (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20:649–660. https://doi.org/10.1016/j.ccr.2011.10.022. (PMID: 10.1016/j.ccr.2011.10.022220942583761879)
Zeng Q, Hu C, Qi R, Lu D (2018) PYNOD reduces microglial inflammation and consequent neurotoxicity upon lipopolysaccharides stimulation. Exp Ther Med 15(5337):5343. https://doi.org/10.3892/etm.2018.6108. (PMID: 10.3892/etm.2018.6108)
Zhang P et al (2016a) C dk5-Dependent Activation of Neuronal Inflammasomes in Parkinson’s Disease. Mov Disord 31:366–376. (PMID: 2685343210.1002/mds.26488)
Zhang Q et al (2020) Kynurenine regulates NLRP2 inflammasome in astrocytes and its implications in depression. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.04.016. (PMID: 10.1016/j.bbi.2020.04.016332619737700008)
Zhang C-W, Hang L, Yao T-P, Lim K-L (2016b) Parkin regulation and neurodegenerative disorders. Front Aging Neurosci 7:248. (PMID: 26793099470959510.3389/fnagi.2015.00248)
Zheng D, Liwinski T, Elinav E (2020) Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 6:1–22.
Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225. (PMID: 2112431510.1038/nature09663)
Zhu S et al (2017) Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546:667–670. https://doi.org/10.1038/nature22967. (PMID: 10.1038/nature22967286365955787375)
معلومات مُعتمدة: PDSE -47/2017 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; FPU 18/02549 Ministerio de Ciencia, Innovación y Universidades; FIS PI13 01293 Federación Española de Parkinson; 19540/PI/14 Fundación Séneca; JCB0057/2016 Fundação de Amparo à Pesquisa do Estado da Bahia; 429127/2018-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico; Research Fellowship Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Glial cell; Inflammasome; Microglia; Neuroinflammation; Parkinson’s disease
المشرفين على المادة: 0 (Inflammasomes)
0 (NLR Family, Pyrin Domain-Containing 3 Protein)
تواريخ الأحداث: Date Created: 20210102 Date Completed: 20220531 Latest Revision: 20220531
رمز التحديث: 20231215
DOI: 10.1007/s10571-020-01027-6
PMID: 33387119
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6830
DOI:10.1007/s10571-020-01027-6