دورية أكاديمية

Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment.

التفاصيل البيبلوغرافية
العنوان: Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment.
المؤلفون: Giorello MB; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina. mbgiorello@gmail.com., Borzone FR; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina., Labovsky V; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina., Piccioni FV; Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos (IBYME) y Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina., Chasseing NA; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina. achasseing@ibyme.conicet.gov.ar.
المصدر: Journal of mammary gland biology and neoplasia [J Mammary Gland Biol Neoplasia] 2021 Jun; Vol. 26 (2), pp. 135-155. Date of Electronic Publication: 2021 Jan 04.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 9601804 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7039 (Electronic) Linking ISSN: 10833021 NLM ISO Abbreviation: J Mammary Gland Biol Neoplasia Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York : Plenum Press, c1996-
مواضيع طبية MeSH: Breast/*pathology , Breast Neoplasms/*pathology , Cancer-Associated Fibroblasts/*pathology , Neoplasm Recurrence, Local/*epidemiology, Breast/cytology ; Breast Neoplasms/mortality ; Breast Neoplasms/therapy ; Carcinogenesis/pathology ; Disease-Free Survival ; Female ; Humans ; Neoplasm Invasiveness/pathology ; Neoplasm Recurrence, Local/pathology ; Neoplasm Recurrence, Local/prevention & control ; Prognosis ; Tumor Microenvironment
مستخلص: Years of investigation have shed light on a theory in which breast tumor epithelial cells are under the effect of the stromal microenvironment. This review aims to discuss recent findings concerning the phenotypic and functional characteristics of cancer associated fibroblasts (CAFs) and their involvement in tumor evolution, as well as their potential implications for anti-cancer therapy. In this manuscript, we reviewed that CAFs play a fundamental role in initiation, growth, invasion, and metastasis of breast cancer, and also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of this disease.
References: Lorusso G, Rüegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol. 2008;130:1091–103. https://doi.org/10.1007/s00418-008-0530-8 . (PMID: 10.1007/s00418-008-0530-818987874)
Bissell MJ, Radisky DC, Rizki A, et al. The organizing principle: Microenvironmental influences in the normal and malignant breast. Differ. 2002;70:537–46. https://doi.org/10.1046/j.1432-0436.2002.700907.x . (PMID: 10.1046/j.1432-0436.2002.700907.x)
Arendt LM, Rudnick JA, Keller PJ, et al. Stroma in breast development and disease. Semin Cell Dev Biol. 2010;21:11–8. https://doi.org/10.1016/j.semcdb.2009.10.003 . (PMID: 10.1016/j.semcdb.2009.10.00319857593)
Chantrain CF, Feron O, Marbaix E, et al. Bone marrow microenvironment and tumor progression. Cancer Microenviron. 2008;1:23–35. https://doi.org/10.1007/s12307-008-0010-7 . (PMID: 10.1007/s12307-008-0010-7193086822654350)
Gao D, Mittal V. The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med. 2009;15:333–43. https://doi.org/10.1016/j.molmed.2009.06.006 . (PMID: 10.1016/j.molmed.2009.06.00619665928)
Gonda TA, Varro A, Wang TC, et al. Molecular biology of cancer-associated fibroblasts: Can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol. 2010;21:2–10. https://doi.org/10.1016/j.semcdb.2009.10.001 . (PMID: 10.1016/j.semcdb.2009.10.00119840860)
Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE. 2009;4:e4992. (PMID: 10.1371/journal.pone.0004992)
Martin FT, Dwyer RM, Kelly J, et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: Stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010;124:317–26. https://doi.org/10.1007/s10549-010-0734-1 . (PMID: 10.1007/s10549-010-0734-120087650)
Rhodes LV, Muir SE, Elliott S, et al. Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat. 2010;121:293–300. https://doi.org/10.1007/s10549-009-0458-2 . (PMID: 10.1007/s10549-009-0458-219597705)
El-Haibi CP, Karnoub AE. Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. J Mammary Gland Biol Neoplas. 2010;15:399–409. https://doi.org/10.1007/s10911-010-9196-7 . (PMID: 10.1007/s10911-010-9196-7)
Klopp AH, Gupta A, Spaeth E, et al. Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29:11–9. https://doi.org/10.1002/stem.559 . (PMID: 10.1002/stem.55921280155)
Luo H, Tu G, Liu Z, et al. Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Lett. 2015;361:155–63. https://doi.org/10.1016/j.canlet.2015.02.018 . (PMID: 10.1016/j.canlet.2015.02.01825700776)
Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 2014;25:61–8. https://doi.org/10.1016/j.semcancer.2014.02.006 . (PMID: 10.1016/j.semcancer.2014.02.00624560651)
Kaushik N, Kim S, Suh Y, et al. Proinvasive extracellular matrix remodeling for tumor progression. Arch Pharmacal Res. 2019;42:40–7. https://doi.org/10.1007/s12272-018-1097-0 . (PMID: 10.1007/s12272-018-1097-0)
Najafi M, Goradel NH, Farhood B, et al. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234:5700–21. https://doi.org/10.1002/jcp.27425 . (PMID: 10.1002/jcp.2742530378106)
Morsing M, Klitgaard MC, Jafari A, et al. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma. Breast Cancer Res. 2016;18:1–11. https://doi.org/10.1186/s13058-016-0769-2 . (PMID: 10.1186/s13058-016-0769-2)
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401. https://doi.org/10.1038/nrc1877 . (PMID: 10.1038/nrc187716572188)
Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. J Exp & Clin Cancer Res. 2020;39:112. https://doi.org/10.1186/s13046-020-01611-0 . (PMID: 10.1186/s13046-020-01611-0)
Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98. https://doi.org/10.1038/nrc.2016.73 . (PMID: 10.1038/nrc.2016.7327550820)
LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Disease models & mechanisms. 2018;11:dmm029447.  https://doi.org/10.1242/dmm.029447 .
Yoshida GJ, Azuma A, Miura Y, et al. Activated fibroblast program orchestrates tumor initiation and progression; molecular mechanisms and the associated therapeutic strategies. Int J Mol Sci. 2019;20:2256. https://doi.org/10.3390/ijms20092256 . (PMID: 10.3390/ijms200922566539414)
Barbazán J, Matic VD. Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol. 2019;56:71–9. https://doi.org/10.1016/j.ceb.2018.09.002 . (PMID: 10.1016/j.ceb.2018.09.00230308331)
Salimifard S, Masjedi A, Hojjat-Farsangi M, et al. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract. 2020;216:152915. https://doi.org/10.1016/j.prp.2020.152915 . (PMID: 10.1016/j.prp.2020.15291532146002)
Shekhar MPV, Pauley R, Heppner G. Extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res. 2003;5:130–5. https://doi.org/10.1186/bcr580 . (PMID: 10.1186/bcr58012793893164997)
Giatromanolaki A, Sivridis E, Koukourakis MI. The pathology of tumor stromatogenesis. Cancer Biol Ther. 2007;6:639–45. https://doi.org/10.4161/cbt.6.5.4198 . (PMID: 10.4161/cbt.6.5.419817534144)
Bitoux M-A, Stamenkovic I. Tumor-host interactions: the role of inflammation. Histochem Cell Biol. 2008;130:1079–90. https://doi.org/10.1007/s00418-008-0527-3 . (PMID: 10.1007/s00418-008-0527-318953558)
Garamszegi N, Garamszegi SP, Shehadeh LA, et al. Extracellular Matrix-Induced Gene Expression in Human Breast Cancer Cells. Mol Cancer Res. 2009;7:319–29. https://doi.org/10.1158/1541-7786.MCR-08-0227 . (PMID: 10.1158/1541-7786.MCR-08-0227192761832681181)
Ali S, Lazennec G. Chemokines: Novel targets for breast cancer metastasis. Cancer Metastasis Rev. 2007;26:401–20. https://doi.org/10.1007/s10555-007-9073-z . (PMID: 10.1007/s10555-007-9073-z177176372668792)
Ahn S, Cho J, Sung J, et al. The prognostic significance of tumor-associated stroma in invasive breast carcinoma. Tumor Biol. 2012;33:1573–80. https://doi.org/10.1007/s13277-012-0411-6 . (PMID: 10.1007/s13277-012-0411-6)
Hugo HJ, Lebret S, Tomaskovic-Crook E, et al. Contribution of fibroblast and mast cell (afferent) and tumor (efferent) IL-6 effects within the tumor microenvironment. Cancer Microenviron. 2012;5:83–93. https://doi.org/10.1007/s12307-012-0098-7 . (PMID: 10.1007/s12307-012-0098-7223143763343200)
Horimoto Y, Polanska UM, Takahashi Y, et al. Emerging roles of the tumor-associated stroma in promoting tumor metastasis. Cell Adhes Migr. 2012;6:193–202. https://doi.org/10.4161/cam.20631 . (PMID: 10.4161/cam.20631)
Conklin MW, Eickhoff JC, Riching KM, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178:1221–32. https://doi.org/10.1016/j.ajpath.2010.11.076 . (PMID: 10.1016/j.ajpath.2010.11.076213563733070581)
Conklin MW, Keely PJ. Why the stroma matters in breast cancer: Insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adhes Migr. 2012;6:249–60. https://doi.org/10.4161/cam.20567 . (PMID: 10.4161/cam.20567)
Hill BS, Sarnella A, D’Avino G, et al. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol. 2019;60:202–13. https://doi.org/10.1016/j.semcancer.2019.07.028 . (PMID: 10.1016/j.semcancer.2019.07.02831377307)
Yeldag G, Rice A, del Río HA. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers. 2018;10:471. https://doi.org/10.3390/cancers10120471 . (PMID: 10.3390/cancers101204716315745)
Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discovery. 2019;18:99–115. https://doi.org/10.1038/s41573-018-0004-1 . (PMID: 10.1038/s41573-018-0004-130470818)
Gillies RJ, Raghunand N, Karczmar GS, et al. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002;16:430–50. https://doi.org/10.1002/jmri.10181 . (PMID: 10.1002/jmri.1018112353258)
Wouters BG, Weppler SA, Koritzinsky M, et al. Hypoxia as a target for combined modality treatments. 2002;38:1–9.
Runkel S, Wischnik A, Teubner J, Kaven E, Gaa J MF. Oxygenation of Mammary Tumors as Evaluated by Ultrasound-Guided Computerized-PO2-Histography. In Oxygen Transport to Tissue XV. Springer, Boston, MA. 1994. p. 451–8.  https://doi.org/10.1007/978-1-4615-2468-7_60 .
Knoop C, Hockel M. Oxygenation of Human Tumors: Evaluation Of Tissue Oxygen Distribution In Breast Cancers By Computerized O2 Tension Measurements. Can Res. 1991;51:3316–22.
Mccarty MF, Whitaker J. Manipulating Tumor Acidification As Cancer Treament Strategys. 2010;15:264–72.
De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200:429–47. https://doi.org/10.1002/path.1398 . (PMID: 10.1002/path.139812845611)
Bishop J. Molecular themes in oncogenesis. Cell. 1991;64:235–48. https://doi.org/10.1016/0092-8674(91)90636-d . (PMID: 10.1016/0092-8674(91)90636-d1988146)
Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nat. 2001;411:375–9. https://doi.org/10.1038/35077241 . (PMID: 10.1038/35077241)
Dolberg DS, Hollingsworth R, Hertle M, et al. Wounding and its role in RSV-mediated tumor formation. Sci. 1985;230:676–8. https://doi.org/10.1126/science.2996144 . (PMID: 10.1126/science.2996144)
Sieweke MH, Thompson NL, Sporn MB, et al. Mediation of wound-related rous sarcoma virus tumorigenesis by TGF-β. Sci. 1990;248:1656–60. https://doi.org/10.1126/science.2163544 . (PMID: 10.1126/science.2163544)
Pietras K, Östman A. Hallmarks of cancer: Interactions with the tumor stroma. Exp Cell Res. 2010;316:1324–31. https://doi.org/10.1016/j.yexcr.2010.02.045 . (PMID: 10.1016/j.yexcr.2010.02.04520211171)
Sappino A ‐P, Skalli O, Jackson B, et al. Smooth‐muscle differentiation in stromal cells of malignant and non‐malignant breast tissues. Int J Cancer. 1988;41:707–12. https://doi.org/10.1002/ijc.2910410512 .
Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96. https://doi.org/10.1016/j.addr.2015.07.007 . (PMID: 10.1016/j.addr.2015.07.00726278673)
Qiao A, Gu F, Guo X, et al. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications. Front Med. 2016;10:33–40. https://doi.org/10.1007/s11684-016-0431-5 . (PMID: 10.1007/s11684-016-0431-526791754)
Kumar S, Shabi TS, Goormaghtigh E. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines. PLoS ONE. 2014;9.  https://doi.org/10.1371/journal.pone.0111137 .
Shiga K, Hara M, Nagasaki T, et al. Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers. 2015;7:2443–58. https://doi.org/10.3390/cancers7040902 . (PMID: 10.3390/cancers7040902266904804695902)
Buchsbaum RJ, Oh SY. Breast cancer-associated fibroblasts: Where we are and where we need to go. Cancers. 2016;8:1–19. https://doi.org/10.3390/cancers8020019 . (PMID: 10.3390/cancers8020019)
Park SY, Kim HM, Koo JS. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727–41. https://doi.org/10.1007/s10549-015-3291-9 . (PMID: 10.1007/s10549-015-3291-925667103)
Purcell JW, Tanlimco SG, Hickson JA, et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Can Res. 2018;78:1457–70. https://doi.org/10.1158/0008-5472.CAN-18-0327 . (PMID: 10.1158/0008-5472.CAN-18-0327)
Sebastian A, Hum NR, Martin KA, et al. Single-Cell Transcriptomic Analysis of Heterogeneity in Breast Cancer. Cancers. 2020;12:E1307. https://doi.org/10.3390/cancers12051307 . (PMID: 10.3390/cancers1205130732455670)
Cortez E, Roswall P, Pietras K. Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol. 2014;25:3–9. https://doi.org/10.1016/j.semcancer.2013.12.010 . (PMID: 10.1016/j.semcancer.2013.12.01024412106)
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell. 2018;33:1–17. https://doi.org/10.1016/j.ccell.2018.01.011 . (PMID: 10.1016/j.ccell.2018.01.011)
Kojima Y, Acar A, Eaton EN, et al. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 2010;107:20009–14. https://doi.org/10.1073/pnas.1013805107 . (PMID: 10.1073/pnas.1013805107210416592993333)
Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-07582-3 .
Raz Y, Cohen N, Shani O, et al. Bone marrow–derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med. 2018;215:3075–93. https://doi.org/10.1084/jem.20180818 . (PMID: 10.1084/jem.20180818304707196279405)
Ghiabi P, Jiang J, Pasquier J, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:1–19. https://doi.org/10.1186/s12967-015-0386-3 . (PMID: 10.1186/s12967-015-0386-3)
Weber, et al. Osteopontin Mediates an MZF1-TGF-β1-Dependent Transformation of Mesenchymal Stem Cells into Cancer Associated Fibroblasts in Breast Cancer. Oncog. 2015;34:4821–33. https://doi.org/10.1038/onc.2014.410 . (PMID: 10.1038/onc.2014.410)
Rønnov-Jessen L, Petersen OW, Koteliansky VE, et al. The origin of the myofibroblasts in breast cancer: Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Investig. 1995;95:859–73. https://doi.org/10.1172/JCI117736 . (PMID: 10.1172/JCI1177367532191295570)
Bochet L, Lehuédé C, Dauvillier S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Can Res. 2013;73:5657–68. https://doi.org/10.1158/0008-5472.CAN-13-0530 . (PMID: 10.1158/0008-5472.CAN-13-0530)
Nair N, Calle AS, Zahra MH, et al. A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep. 2017;7:6838. https://doi.org/10.1038/s41598-017-07144-5 . (PMID: 10.1038/s41598-017-07144-5287548945533745)
Bronzert DA, Pantazis P, Antoniades HN, et al. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci USA. 1987;84:5763–7. https://doi.org/10.1073/pnas.84.16.5763 . (PMID: 10.1073/pnas.84.16.57633039506298943)
Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncog. 2000;19:4337–45. https://doi.org/10.1038/sj.onc.1203785 . (PMID: 10.1038/sj.onc.1203785)
Hendrayani SF, Al-Khalaf HH, Aboussekhra A. The cytokine il-6 reactivates breast stromal fibroblasts through transcription factor STAT3-dependent up-regulation of the RNA-binding protein AUF1. J Biol Chem. 2014;289:30962–76. https://doi.org/10.1074/jbc.M114.594044 . (PMID: 10.1074/jbc.M114.594044252319914223303)
Sharon Y, Raz Y, Cohen N, et al. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Can Res. 2015;75:963–73. https://doi.org/10.1158/0008-5472.CAN-14-1990 . (PMID: 10.1158/0008-5472.CAN-14-1990)
Arcucci A, Ruocco MR, Granato G, et al. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts. BioMed Res Int. 2016.  https://doi.org/10.1155/2016/4502846 .
Li K, Liu T, Chen J, et al. Survivin in breast cancer-derived exosomes activates fibroblasts by upregulating SOD1, whose feedback promotes cancer proliferation and metastasis. J Biol Chem. 2020. jbc.RA120.013805. https://doi.org/10.1074/jbc.ra120.013805 .
Vu LT, Peng B, Zhang DX, et al. Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 2019;8:1599680. https://doi.org/10.1080/20013078.2019.1599680 . (PMID: 10.1080/20013078.2019.1599680310440536484490)
Chatterjee A, Jana S, Chatterjee S, et al. MicroRNA-222 reprogrammed cancer-associated fi broblasts enhance growth and metastasis of breast cancer. Br J Cancer. 2019. https://doi.org/10.1038/s41416-019-0566-7 . (PMID: 10.1038/s41416-019-0566-7314817346889135)
Albrengues J, Bertero T, Grasset E, et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun. 2015;6:10204. https://doi.org/10.1038/ncomms10204 . (PMID: 10.1038/ncomms1020426667266)
Wang D dan, Li J, Sha H huan, et al. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27kip1 expression. Gene. 2016;590:44–50. https://doi.org/10.1016/j.gene.2016.06.013 .
Costa A, Scholer-Dahirel A, Mechta-Grigoriou F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol. 2014;25:23–32. https://doi.org/10.1016/j.semcancer.2013.12.007 . (PMID: 10.1016/j.semcancer.2013.12.00724406211)
Manuscript A, Cells D, Cancer B. Role of Oxidative Stress and the Microenvironment in Breast Cancer Development and Progression. 2014;19:1–11. https://doi.org/10.1097/PPO.0000000000000007.Dendritic . (PMID: 10.1097/PPO.0000000000000007.Dendritic)
Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in bioscience (Landmark edition). 2010;15:166–79. https://doi.org/10.2741/3613 . (PMID: 10.2741/3613)
Kwa MQ, Herum KM, Brakebusch C. Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metas. 2019;36:71–86. https://doi.org/10.1007/s10585-019-09959-0 . (PMID: 10.1007/s10585-019-09959-0)
Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: A vicious tumor progression cycle. Biol Chem. 2008;389:1037–41. https://doi.org/10.1515/BC.2008.110 . (PMID: 10.1515/BC.2008.11018979628)
Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32:550–70. https://doi.org/10.1210/er.2010-0030 . (PMID: 10.1210/er.2010-0030216422303369575)
Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99:1375–9. https://doi.org/10.1038/sj.bjc.6604662 . (PMID: 10.1038/sj.bjc.6604662187974602579683)
Zeisberg EM, Potenta S, Xie L, et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Can Res. 2007;67:10123–8. https://doi.org/10.1158/0008-5472.CAN-07-3127 . (PMID: 10.1158/0008-5472.CAN-07-3127)
Yeon JH, Jeong HE, Seo H, et al. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomater. 2018;76:146–53. https://doi.org/10.1016/j.actbio.2018.07.001 . (PMID: 10.1016/j.actbio.2018.07.00130078422)
Chaturvedi P, Gilkes DM, Wong CCL, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig. 2013;123:189–205. https://doi.org/10.1172/JCI64993 . (PMID: 10.1172/JCI6499323318994)
Spaeth E, Klopp A, Dembinski J, et al. Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15:730–8. https://doi.org/10.1038/gt.2008.39 . (PMID: 10.1038/gt.2008.3918401438)
Shi Y, Du L, Lin L, et al. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat Rev Drug Discovery. 2016;16:35–52. https://doi.org/10.1038/nrd.2016.193 . (PMID: 10.1038/nrd.2016.19327811929)
Sewell-Loftin MK, Bayer SVH, Crist E, et al. Cancer-associated fibroblasts support vascular growth through mechanical force. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-13006-x . (PMID: 10.1038/s41598-017-13006-x)
Wobus M, List C, Dittrich T, et al. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int J Cancer. 2015;136:44–54. https://doi.org/10.1002/ijc.28960 . (PMID: 10.1002/ijc.2896024806942)
Jahn SC, Law ME, Corsino PE, et al. An in vivo model of epithelial to mesenchymal transition reveals a mitogenic switch. Cancer Lett. 2012;326:183–90. https://doi.org/10.1016/j.canlet.2012.08.013 . (PMID: 10.1016/j.canlet.2012.08.013229064173705571)
Paunescu V, Bojin FM, Tatu CA, et al. Tumour-associated fibroblasts and mesenchymal stem cells: More similarities than differences. J Cell Mol Med. 2011;15:635–46. https://doi.org/10.1111/j.1582-4934.2010.01044.x . (PMID: 10.1111/j.1582-4934.2010.01044.x20184663)
Del Valle PR, Milani C, Brentani MM, et al. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol. 2014;37:480–9. https://doi.org/10.1590/S1415-47572014000400002 . (PMID: 10.1590/S1415-47572014000400002252497694171766)
Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Can Res. 2008;68:4331–9. https://doi.org/10.1158/0008-5472.CAN-08-0943 . (PMID: 10.1158/0008-5472.CAN-08-0943)
Pasanen I, Lehtonen S, Sormunen R, et al. Breast cancer carcinoma-associated fibroblasts differ from breast fibroblasts in immunological and extracellular matrix regulating pathways. Exp Cell Res. 2016;344:53–66. https://doi.org/10.1016/j.yexcr.2016.04.016 . (PMID: 10.1016/j.yexcr.2016.04.01627112989)
Heneberg P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol/Hematol. 2016;97:303–11. https://doi.org/10.1016/j.critrevonc.2015.09.008 . (PMID: 10.1016/j.critrevonc.2015.09.008)
Labovsky V, Martinez LM, Davies KM, et al. Association Between Ligands and Receptors Related to the Progression of Early Breast Cancer in Tumor Epithelial and Stromal Cells. Clin Breast Cancer. 2015;15:e13–21. https://doi.org/10.1016/j.clbc.2014.05.006 . (PMID: 10.1016/j.clbc.2014.05.00625044301)
Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012;31:195–208. https://doi.org/10.1007/s10555-011-9340-x . (PMID: 10.1007/s10555-011-9340-x22101652)
Neel J-C, Humbert L, Lebrun J-J. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN Mol Biol. 2012;2012:1–28. https://doi.org/10.5402/2012/381428 . (PMID: 10.5402/2012/381428)
Principe DR, Doll JA, Bauer J, et al. TGF-β: Duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106:1–16. https://doi.org/10.1093/jnci/djt369 . (PMID: 10.1093/jnci/djt369)
Knudson KM, Hicks KC, Luo X, et al. M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. OncoImmunology. 2018;7:1–14. https://doi.org/10.1080/2162402X.2018.1426519 . (PMID: 10.1080/2162402X.2018.1426519)
Boyd N, Berman H, Zhu J, et al. The origins of breast cancer associated with mammographic density: A testable biological hypothesis. Breast Cancer Res. 2018;20:1–13. https://doi.org/10.1186/s13058-018-0941-y . (PMID: 10.1186/s13058-018-0941-y)
Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, et al. Radiation Acts on the Microenvironment to Affect Breast Carcinogenesis by Distinct Mechanisms that Decrease Cancer Latency and Affect Tumor Type. Cancer Cell. 2011;19:640–51. https://doi.org/10.1016/j.ccr.2011.03.011 . (PMID: 10.1016/j.ccr.2011.03.011215758643110779)
Kuperwasser C, Chavarria T, Wu M, et al. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci. 2004;101:4966–71. https://doi.org/10.1073/pnas.0401064101 . (PMID: 10.1073/pnas.040106410115051869387357)
Shekhar MPV, Werdell J, Santner SJ, et al. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumor development and progression. Can Res. 2001;61:1320–6.
Wang B, Xi C, Liu M, et al. Breast fibroblasts in both cancer and normal tissues induce phenotypic transformation of breast cancer stem cells : a preliminary study. 2018:1–19. https://doi.org/10.7717/peerj.4805 .
Acharyya S, Oskarsson T, Vanharanta S, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. cell. 2012. https://doi.org/10.1016/j.cell.2012.04.042 .
Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48. https://doi.org/10.1016/j.cell.2005.02.034 . (PMID: 10.1016/j.cell.2005.02.03415882617)
Liao D, Luo Y, Markowitz D, et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE. 2009;4:e7965. https://doi.org/10.1371/journal.pone.0007965 . (PMID: 10.1371/journal.pone.0007965199567572775953)
Sjöberg E, Augsten M, Bergh J, et al. Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br J Cancer. 2016;114:1117–24. https://doi.org/10.1038/bjc.2016.104 . (PMID: 10.1038/bjc.2016.104271154654865967)
Sjöberg E, Meyrath M, Milde L, et al. A novel ACKR2-Dependent role of fibroblast-derived CXCL14 in epithelial-to-mesenchymal transition and metastasis of breast cancer. Clin Cancer Res. 2019;25:3702–17. https://doi.org/10.1158/1078-0432.CCR-18-1294 . (PMID: 10.1158/1078-0432.CCR-18-129430850359)
Allaoui R, Bergenfelz C, Mohlin S, et al. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun. 2016;7:13050. https://doi.org/10.1038/ncomms13050 . (PMID: 10.1038/ncomms13050277256315062608)
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211:1503–23. https://doi.org/10.1084/jem.20140692 . (PMID: 10.1084/jem.20140692250711624113948)
Karnoub AE1, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R WR. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nat. 2007.
Suh J, Kim DH, Lee YH, et al. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling. Mol carcinog. 2020:1–13. https://doi.org/10.1002/mc.23233 .
Wu X, Zahari MS, Renuse S, et al. Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin Proteomics. 2018;15:21. https://doi.org/10.1186/s12014-018-9197-x . (PMID: 10.1186/s12014-018-9197-x299462306003199)
DeClerck YA, Pienta KJ, Woodhouse EC, et al. The tumor microenvironment at a turning point knowledge gained over the last decade, and challenges and opportunities ahead: A white paper from the NCI TME network. Can Res. 2017;77:1051–9. https://doi.org/10.1158/0008-5472.CAN-16-1336 . (PMID: 10.1158/0008-5472.CAN-16-1336)
Qiu W, Hu M, Sridhar A, et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet. 2008;40:650–5. https://doi.org/10.1038/ng.117 . (PMID: 10.1038/ng.117184087203745022)
Jang I, Beningo KA. Integrins, CAFs and Mechanical Forces in the Progression of Cancer. Cancers. 2019;11:721. https://doi.org/10.3390/cancers11050721 . (PMID: 10.3390/cancers110507216562616)
Wang Z, Xiong S, Mao Y, et al. Periostin promotes immunosuppressive pre-metastatic niche formation to facilitate breast tumor metastasis. J Pathol. 2016;239:484–95. (PMID: 10.1002/path.4747)
Huang W, Chiquet-Ehrismann R, Orend G, et al. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Can Res. 2001;61:8586–94.
Labovsky V, Martinez LM, Davies KM, et al. Prognostic significance of TRAIL-R3 and CCR-2 expression in tumor epithelial cells of patients with early breast cancer. BMC Cancer. 2017;17:280. https://doi.org/10.1186/s12885-017-3259-8 . (PMID: 10.1186/s12885-017-3259-8284203515395831)
Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9:3256–76. https://doi.org/10.4161/cc.9.16.12553 . (PMID: 10.4161/cc.9.16.12553208142393041164)
Sanford-Crane H, Abrego J, Sherman MH. Fibroblasts as Modulators of Local and Systemic Cancer Metabolism. Cancers. 2019;11:619. https://doi.org/10.3390/cancers11050619 . (PMID: 10.3390/cancers110506196562905)
Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001. https://doi.org/10.4161/cc.8.23.10238 . (PMID: 10.4161/cc.8.23.1023819923890)
Sotgia F, Martinez-Outschoorn UE, Pavlides S, et al. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 2011;13:1–13. https://doi.org/10.1186/bcr2892 . (PMID: 10.1186/bcr2892)
Fu Y, Liu S, Yin S, et al. The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget. 2017;8:57813–25. https://doi.org/10.18632/oncotarget.18175 .
Becker LM, O’Connell JT, Vo AP, et al. Epigenetic Reprogramming of Cancer-Associated Fibroblasts Deregulates Glucose Metabolism and Facilitates Progression of Breast Cancer. Cell Rep. 2020;31:107701. https://doi.org/10.1016/j.celrep.2020.107701 . (PMID: 10.1016/j.celrep.2020.107701324924177339325)
Eiro N, González L, Martínez-Ordoñez A, et al. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol. 2018:1–10. https://doi.org/10.1007/s13402-018-0371-y .
Lappano R, Rigiracciolo DC, Belfiore A, et al. Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opinion on Therapeutic Targets. 2020;24:559–72. https://doi.org/10.1080/14728222.2020.1751819 . (PMID: 10.1080/14728222.2020.175181932249708)
Yu Y, Xiao CH, Tan LD, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 2014;110:724–32. https://doi.org/10.1038/bjc.2013.768 . (PMID: 10.1038/bjc.2013.76824335925)
Matà R, Palladino C, Nicolosi ML, et al. IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway. Oncotarget. 2016;7:7683–700. https://doi.org/10.18632/oncotarget.6524 .
Dumont N, Liu B, Defilippis RA, et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia (United States). 2013;15:249–62. https://doi.org/10.1593/neo.121950 . (PMID: 10.1593/neo.121950)
Wang JM, Deng X, Gong W, et al. Chemokines and their role in tumor growth and metastasis. J Immunol Methods. 1998;220:1–17. https://doi.org/10.1016/S0022-1759(98)00128-8 . (PMID: 10.1016/S0022-1759(98)00128-89839921)
Primac I, Maquoi E, Blacher S, et al. Stromal integrin α11 regulates PDGFRβ signaling and promotes breast cancer progression. J Clin Investig. 2019;129:4609–28. https://doi.org/10.1172/JCI125890 . (PMID: 10.1172/JCI125890312878046819106)
Tyan SW, Kuo WH, Huang CK, et al. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS ONE. 2011;6:1–9. https://doi.org/10.1371/journal.pone.0015313 . (PMID: 10.1371/journal.pone.0015313)
Osuala KO, Sameni M, Shah S, et al. Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer. 2015;15. https://doi.org/10.1186/s12885-015-1576-3 .
Studebaker AW, Storci G, Werbeck JL, et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Can Res. 2008;68:9087–95. https://doi.org/10.1158/0008-5472.CAN-08-0400 . (PMID: 10.1158/0008-5472.CAN-08-0400)
Liu Y, Yang Y, Du J, et al. MiR-3613–3p from carcinoma-associated fibroblasts exosomes promoted breast cancer cell proliferation and metastasis by regulating SOCS2 expression. IUBMB Life. 2020:1–10. https://doi.org/10.1002/iub.2292 .
Donnarumma E, Fiore D, Nappa M, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget. 2017;8:19592–608. https://doi.org/10.18632/oncotarget.14752 .
Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9:1392–400. https://doi.org/10.1038/ncb1658 . (PMID: 10.1038/ncb165818037882)
Attieh Y, Clark AG, Grass C, et al. Cancer-associated fibroblasts lead tumor invasion through integrin-β3-dependent fibronectin asse. J Cell Biol. 2017;216:3509–20. https://doi.org/10.1083/jcb.201702033 . (PMID: 10.1083/jcb.2017020332893155628931556)
Nabeshima K, Inoue T, Shimao Y, et al. Matrix metalloproteinases in tumor invasion: Role for cell migration. Pathol Int. 2002;52:255–64. https://doi.org/10.1046/j.1440-1827.2002.01343.x . (PMID: 10.1046/j.1440-1827.2002.01343.x12031080)
Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2017;18:1135–49. (PMID: 10.1200/JCO.2000.18.5.1135)
Matsumura Y, Ito Y, Mezawa Y, et al. Stromal fibroblasts induce metastatic tumor cell clusters via epithelial–mesenchymal plasticity. Life Sci Alliance. 2019;2:1–24.  https://doi.org/10.26508/lsa.201900425 .
Duda DG, Duyverman AMMJ, Kohno M, et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 2010;107:21677–82. https://doi.org/10.1073/pnas.1016234107 . (PMID: 10.1073/pnas.1016234107210982743003109)
Psailaa B, Kaplana RN, Port ER, et al. Priming the “soil” for breast cancer metastasis: The Pre-Metastatic Niche. Breast Dis. 2006;26:65–74. https://doi.org/10.3233/bd-2007-26106 . (PMID: 10.3233/bd-2007-26106)
Ursini-Siegel J, Siegel PM. The influence of the pre-metastatic niche on breast cancer metastasis. Cancer Lett. 2016;380:281–8. https://doi.org/10.1016/j.canlet.2015.11.009 . (PMID: 10.1016/j.canlet.2015.11.00926577808)
Feng T, Zhang P, Sun Y, et al. High throughput sequencing identifies breast cancer-secreted exosomal LncRNAs initiating pulmonary pre-metastatic niche formation. Gene. 2019;710:258–64. https://doi.org/10.1016/j.gene.2019.06.004 . (PMID: 10.1016/j.gene.2019.06.00431176731)
Taverna S, Giusti I, D’ascenzo S, et al. Breast cancer derived extracellular vesicles in bone metastasis induction and their clinical implications as biomarkers. Int J Mol Sci. 2020;21:1–21. https://doi.org/10.3390/ijms21103573 .
Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nat. 2005;438:820–7. https://doi.org/10.1038/nature04186 . (PMID: 10.1038/nature04186)
Cox TR, Bird D, Baker A, et al. LOX-Mediated Collagen Crosslinking Is Responsible for Fibrosis-Enhanced Metastasis. Can Res. 2013;73:1721–32. https://doi.org/10.1158/0008-5472.CAN-12-2233 . (PMID: 10.1158/0008-5472.CAN-12-2233)
Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nat. 2012;481:85–91. https://doi.org/10.1038/nature10694 . (PMID: 10.1038/nature10694)
Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev. 2018;37:577–97. https://doi.org/10.1007/s10555-018-9768-3 . (PMID: 10.1007/s10555-018-9768-330465162)
Zhang Y and Ertl HC. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors. Oncotarget. 2016;7:23282–99. https://doi.org/10.18632/oncotarget.7818 .
Zhang J, Pang Y, Xie T, et al. CXCR4 antagonism in combination with IDO1 inhibition weakens immune suppression and inhibits tumor growth in mouse breast cancer bone metastases. OncoTargets Ther. 2019;12:4985–92. https://doi.org/10.2147/OTT.S200643 . (PMID: 10.2147/OTT.S200643)
Xia Q, Zhang FF, Geng F, et al. Improvement of anti-tumor immunity of fibroblast activation protein α based vaccines by combination with cyclophosphamide in a murine model of breast cancer. Cell Immunol. 2016;310:89–98. https://doi.org/10.1016/j.cellimm.2016.08.006 . (PMID: 10.1016/j.cellimm.2016.08.00627545090)
Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;33:CD-19–1384. https://doi.org/10.1158/2159-8290.cd-19-1384 .
Gok Yavuz B, Gunaydin G, Gedik ME, et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs. Sci Rep. 2019;9:1–15. https://doi.org/10.1038/s41598-019-39553-z . (PMID: 10.1038/s41598-019-39553-z)
Roca H, Varcos ZS, Sud S, et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem. 2009;284:34342–54. https://doi.org/10.1074/jbc.M109.042671 . (PMID: 10.1074/jbc.M109.042671198337262797202)
Mulholland BS, Forwood MR, Morrison NA. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) Drives Activation of Bone Remodelling and Skeletal Metastasis. Curr Osteoporos Rep. 2019;17:538–47. https://doi.org/10.1007/s11914-019-00545-7 . (PMID: 10.1007/s11914-019-00545-7317131806944672)
Khalid A, Wolfram J, Ferrari I, et al. Recent Advances in Discovering the Role of CCL5 in Metastatic Breast Cancer. Mini-Reviews Med Chem. 2015;15:1063–72. https://doi.org/10.2174/138955751513150923094709 . (PMID: 10.2174/138955751513150923094709)
Swamydas M, Ricci K, Rego SL, et al. Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adhes Migr. 2013;7:315–24. https://doi.org/10.4161/cam.25138 . (PMID: 10.4161/cam.25138)
Ouyang L, Chang W, Fang B, et al. Estrogen-induced SDF-1α production promotes the progression of ER-negative breast cancer via the accumulation of MDSCs in the tumor microenvironment. Sci Rep. 2016;6:39541. https://doi.org/10.1038/srep39541 . (PMID: 10.1038/srep39541279960375172230)
Shou D, Wen L, Song Z, et al. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget. 2016;7:64505–11. https://doi.org/10.18632/oncotarget.11352 .
Stüber T, Monjezi R, Wallstabe L, et al. Inhibition of TGF- β- Receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J ImmunoTher Cancer. 2020;8:1–7. https://doi.org/10.1136/jitc-2020-000676 . (PMID: 10.1136/jitc-2020-000676)
Hargadon K. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity. J Clin Med. 2016;5:76. https://doi.org/10.3390/jcm5090076 . (PMID: 10.3390/jcm50900765039479)
Silzle T, Kreutz M, Dobler MA, et al. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol. 2003;33:1311–20. https://doi.org/10.1002/eji.200323057 . (PMID: 10.1002/eji.20032305712731056)
Cohen N, Shani O, Raz Y, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncog. 2017;36:4457–68. https://doi.org/10.1038/onc.2017.65 . (PMID: 10.1038/onc.2017.65)
Piersma B, Hayward MK and Weaver VM. Fibrosis and cancer: A strained relationship. Biochimica et Biophysica Acta - Rev Cancer. 2020;1873. https://doi.org/10.1016/j.bbcan.2020.188356 .
Glentis A, Oertle P, Mariani P, et al. Correction: Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun. 2018;9:75005. https://doi.org/10.1038/s41467-018-03304-x . (PMID: 10.1038/s41467-018-03304-x)
Yamashita M, Ogawa T, Zhang X, et al. Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 2012;19:170–6. https://doi.org/10.1007/s12282-010-0234-5 . (PMID: 10.1007/s12282-010-0234-520978953)
Paulsson J, Sjöblom T, Micke P, et al. Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer. Am J Pathol. 2009;175:334–41. https://doi.org/10.2353/ajpath.2009.081030 . (PMID: 10.2353/ajpath.2009.081030194980032708819)
Ariga N, Sato E, Ohuchi N, et al. Stromal expression of fibroblast activation protein / seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal. Int J Cancer. 2001;95:67–72. https://doi.org/10.1002/1097-0215(20010120)95:1%3c67::aid-ijc1012%3e3.0.co;2-u . (PMID: 10.1002/1097-0215(20010120)95:1<67::aid-ijc1012>3.0.co;2-u11241314)
Kim HM, Jung WH, Koo JS. Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J Transl Med. 2015;13:222. https://doi.org/10.1186/s12967-015-0587-9 . (PMID: 10.1186/s12967-015-0587-9261633884702422)
Ao Z, Shah SH, Machlin LM, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Can Res. 2015;75:4681–7. https://doi.org/10.1158/0008-5472.CAN-15-1633 . (PMID: 10.1158/0008-5472.CAN-15-1633)
Schoppmann SF, Berghoff A, Dinhof C, et al. Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 2012;134:237–44. https://doi.org/10.1007/s10549-012-1984-x . (PMID: 10.1007/s10549-012-1984-x22350732)
Cai D, Wu X, Hong T, et al. CD61+ and CAF+ were found to be good prognosis factors for invasive breast cancer patients. Pathol Res Pract. 2017;213:1296–301. https://doi.org/10.1016/j.prp.2017.06.016 . (PMID: 10.1016/j.prp.2017.06.01628935175)
Amornsupak K, Jamjuntra P, Warnnissorn M, et al. High ASMA+Fibroblasts and Low Cytoplasmic HMGB1+Breast Cancer Cells Predict Poor Prognosis. Clin Breast Cancer. 2017;17:441–52. https://doi.org/10.1016/j.clbc.2017.04.007 . (PMID: 10.1016/j.clbc.2017.04.00728533055)
Brechbuhl HM, Barrett AS, Kopin E, et al. Fibroblast subtypes define a metastatic matrisome in breast cancer. JCI Insight. 2020;5:1–16. https://doi.org/10.1172/jci.insight.130751 . (PMID: 10.1172/jci.insight.130751)
Martinez LM, Labovsky V, De Lujan CM, et al. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE. 2015;10:1993–6. https://doi.org/10.1371/journal.pone.0121421 . (PMID: 10.1371/journal.pone.0121421)
Labovsky V, Martinez LM, Calcagno M de L, et al. Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer. Tumor Biol. 2016;37:13377–84. https://doi.org/10.1007/s13277-016-5268-7 .
Wallace JA, Li F, Leone G, et al. Pten in the breast tumor microenvironment: Modeling tumor-stroma coevolution. Can Res. 2011;71:1203–7. https://doi.org/10.1158/0008-5472.CAN-10-3263 . (PMID: 10.1158/0008-5472.CAN-10-3263)
Tchou J, Kossenkov AV, Chang L, et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics. 2012;5:39. https://doi.org/10.1186/1755-8794-5-39 . (PMID: 10.1186/1755-8794-5-39229542563505468)
Busch S, Andersson D, Bom E, et al. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol Cancer. 2017;16:1–12. https://doi.org/10.1186/s12943-017-0642-7 . (PMID: 10.1186/s12943-017-0642-7)
Konieczkowski DJ, Johannessen CM, Garraway LA, et al. A convergence-based framework for cancer drug resistance. Cancer Cell. 2019;33:801–15. https://doi.org/10.1016/j.ccell.2018.03.025.A . (PMID: 10.1016/j.ccell.2018.03.025.A)
Valkenburg KC, De Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018. https://doi.org/10.1038/s41571-018-0007-1 . (PMID: 10.1038/s41571-018-0007-1296511305960434)
Loeffler M, Krüger JA, Niethammer AG, et al. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Investig. 2009;119:421–421. https://doi.org/10.1172/jci26532c1 . (PMID: 10.1172/jci26532c12631285)
Fang J, Xiao L, Joo K Il, et al. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. Int J Cancer. 2016;138:1013–23. https://doi.org/10.1002/ijc.29831 .
Su S, Chen J, Yao H, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172(841–856):e16. https://doi.org/10.1016/j.cell.2018.01.009 . (PMID: 10.1016/j.cell.2018.01.009)
Boesch M, Onder L, Cheng HW, et al. Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. OncoImmunology. 2018;7:e1414129. https://doi.org/10.1080/2162402X.2017.1414129 . (PMID: 10.1080/2162402X.2017.1414129296327335889213)
Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4:2516. https://doi.org/10.1038/ncomms3516 . (PMID: 10.1038/ncomms351624084631)
Hu C, Liu X, Ran W, et al. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials. 2017;144:60–72. https://doi.org/10.1016/j.biomaterials.2017.08.009 . (PMID: 10.1016/j.biomaterials.2017.08.00928823844)
Ryan D, Koziol J, ElShamy WM. Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep. 2019;9:1–19. https://doi.org/10.1038/s41598-019-55702-w . (PMID: 10.1038/s41598-019-55702-w)
Egeland EV, Boye K, Park D, et al. Prognostic significance of S100A4-expression and subcellular localization in early-stage breast cancer. Breast Cancer Res Treat. 2017;162:127–37. https://doi.org/10.1007/s10549-016-4096-1 . (PMID: 10.1007/s10549-016-4096-128058579)
Boye K, Mælandsmo GM. S100A4 and metastasis: A small actor playing many roles. Am J Pathol. 2010;176:528–35. https://doi.org/10.2353/ajpath.2010.090526 . (PMID: 10.2353/ajpath.2010.090526200191882808059)
Leconet W, Chentouf M, Du Manoir S, et al. Therapeutic activity of anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin Cancer Res. 2017;23:2806–16. https://doi.org/10.1158/1078-0432.CCR-16-1316 . (PMID: 10.1158/1078-0432.CCR-16-131627923843)
Wu X, Liu X, Koul S, et al. AXL kinase as a novel target for cancer therapy. Oncotarget. 2014;5:9546–63. https://doi.org/10.18632/oncotarget.2542 .
Park JS, Lee CH, Kim HK, et al. Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget. 2016;7:83308–18. https://doi.org/10.18632/oncotarget.13088 .
Wang C, Jin H, Wang N, et al. Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3β/β- catenin signaling. Theranostics. 2016;6:1205–19. https://doi.org/10.7150/thno.15083 . (PMID: 10.7150/thno.15083272799124893646)
Ye X, Li Y, Stawicki S, et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncog. 2010;29:5254–64. https://doi.org/10.1038/onc.2010.268 . (PMID: 10.1038/onc.2010.268)
Hudson BI, Lippman ME. Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med. 2018;69:349–64. https://doi.org/10.1146/annurev-med-041316-085215 . (PMID: 10.1146/annurev-med-041316-08521529106804)
El-Far AH, Sroga G, Al Jaouni SK, et al. Role and mechanisms of rage-ligand complexes and rage-inhibitors in cancer progression. Int J Mol Sci. 2020;21:1–21. https://doi.org/10.3390/ijms21103613 . (PMID: 10.3390/ijms21103613)
Hollosi P, Yakushiji JK, Fong KSK, et al. Lysyl oxidase-like 2 promotes migration in noninvasive breast cancer cells but not in normal breast epithelial cells. Int J Cancer. 2009;125:318–27. https://doi.org/10.1002/ijc.24308 . (PMID: 10.1002/ijc.2430819330836)
Barker HE, Chang J, Cox TR, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Can Res. 2011;71:1561–72. https://doi.org/10.1158/0008-5472.CAN-10-2868 . (PMID: 10.1158/0008-5472.CAN-10-2868)
Barker HE, Bird D, Lang G, et al. Tumor-secreted LOXL2 activates fibroblasts through fak signaling. Mol Cancer Res. 2013;11:1425–36. https://doi.org/10.1158/1541-7786.MCR-13-0033-T . (PMID: 10.1158/1541-7786.MCR-13-0033-T24008674)
Takai K, Le A, Weaver VM, et al. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889–901. https://doi.org/10.18632/oncotarget.12658 .
Al-Harbi B, Hendrayani SF, Silva G, et al. Let-7b inhibits cancer-promoting effects of breast cancerassociated fibroblasts through IL-8 repression. Oncotarget. 2018;9:17825–38. https://doi.org/10.18632/oncotarget.24895 .
Casey TM, Eneman J, Crocker A, et al. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-β1) increase invasion rate of tumor cells: A population study. Breast Cancer Res Treat. 2008;110:39–49. https://doi.org/10.1007/s10549-007-9684-7 . (PMID: 10.1007/s10549-007-9684-717674196)
Rønnov-Jessen L PO. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest. 1993;68:696–707.
Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122:103–11. https://doi.org/10.1083/jcb.122.1.103 . (PMID: 10.1083/jcb.122.1.1038314838)
Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. https://doi.org/10.1016/S0092-8674(03)00432-X . (PMID: 10.1016/S0092-8674(03)00432-X12809600)
Xu J, Lu Y, Qiu S, et al. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells. Cancer Lett. 2013;335:380–6. https://doi.org/10.1016/j.canlet.2013.02.054 . (PMID: 10.1016/j.canlet.2013.02.054234744953927232)
فهرسة مساهمة: Keywords: Biomarkers of CAFs; Breast cancer; Cancer associated fibroblasts; Immunosuppression activity; Pro-tumoral activity
تواريخ الأحداث: Date Created: 20210105 Date Completed: 20220201 Latest Revision: 20220201
رمز التحديث: 20240829
DOI: 10.1007/s10911-020-09475-y
PMID: 33398516
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7039
DOI:10.1007/s10911-020-09475-y