دورية أكاديمية

The role of the microbiome and the NLRP3 inflammasome in the gut and lung.

التفاصيل البيبلوغرافية
العنوان: The role of the microbiome and the NLRP3 inflammasome in the gut and lung.
المؤلفون: Donovan C; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia., Liu G; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia., Shen S; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia., Marshall JE; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia., Kim RY; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia., Alemao CA; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia., Budden KF; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia., Choi JP; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia., Kohonen-Corish M; Woolcock Institute of Medical Research and Faculty of Science, University of Technology Sydney, Garvan Institute of Medical Research and St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia., El-Omar EM; Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia., Yang IA; The Prince Charles Hospital and The University of Queensland, Brisbane, Queensland, Australia., Hansbro PM; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia.
المصدر: Journal of leukocyte biology [J Leukoc Biol] 2020 Sep; Vol. 108 (3), pp. 925-935. Date of Electronic Publication: 2020 Aug 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 8405628 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1938-3673 (Electronic) Linking ISSN: 07415400 NLM ISO Abbreviation: J Leukoc Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : Oxford : Oxford University Press
Original Publication: New York : Alan R. Liss, c1984-
مواضيع طبية MeSH: Gastrointestinal Microbiome/*immunology , Inflammasomes/*immunology , Inflammation/*immunology , Intestines/*immunology , Lung/*immunology , NLR Family, Pyrin Domain-Containing 3 Protein/*physiology, Aging/immunology ; Air Pollutants/toxicity ; Animals ; Asthma/immunology ; Cigarette Smoking/immunology ; Colitis/immunology ; Colitis/microbiology ; Colitis/therapy ; Dysbiosis/immunology ; Fecal Microbiota Transplantation ; Furans ; Heterocyclic Compounds, 4 or More Rings/pharmacology ; Humans ; Indenes ; Mice ; Mice, Knockout ; NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors ; NLR Family, Pyrin Domain-Containing 3 Protein/deficiency ; Pneumonia, Bacterial/immunology ; Pneumonia, Viral/immunology ; Pulmonary Disease, Chronic Obstructive/immunology ; Specific Pathogen-Free Organisms ; Sulfonamides ; Sulfones/pharmacology ; Symbiosis
مستخلص: The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, is one of the most well-characterized inflammasomes, activated by pathogen-associated molecular patterns and damage-associated molecular patterns, including from commensal or pathogenic bacterial and viral infections. The NLRP3 inflammasome promotes inflammatory cell recruitment and regulates immune responses in tissues such as the gastrointestinal tract and the lung, and is involved in many diseases that affect the gut and lung. Recently, the microbiome in the gut and the lung, and the crosstalk between these organs (gut-lung axis), has been identified as a potential mechanism that may influence disease in a bidirectional manner. In this review, we focus on themes presented in this area at the 2019 World Congress on Inflammation. We discuss recent evidence on how the microbiome can affect NLRP3 inflammasome responses in the gut and lung, the role of this inflammasome in regulating gut and lung inflammation in disease, and its potential role in the gut-lung axis. We highlight the exponential increase in our understanding of the NLRP3 inflammasome due to the synthesis of the NLRP3 inflammasome inhibitor, MCC950, and propose future studies that may further elucidate the roles of the NLRP3 inflammasome in gut and lung diseases.
(©2020 Society for Leukocyte Biology.)
References: Shen S, Prame Kumar K, Stanley D, et al. Invariant natural killer T cells shape the gut microbiota and regulate neutrophil recruitment and function during intestinal inflammation. Front Immunol. 2018;9:999.
Macia L, Tan J, Vieira AT, et al. Metabolite‐sensing receptors GPR43 and GPR109A facilitate dietary fibre‐induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.
Macia L, Thorburn AN, Binge LC, et al. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol Rev. 2012;245(1):164‐176.
Dinan TG, Cryan JF. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42(1):178‐192.
Hersoug LG, Møller P, Loft S. Role of microbiota‐derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr Res Rev. 2018;31(2):153‐163.
Inserra A, Rogers GB, Licinio J, Wong ML. The microbiota‐inflammasome hypothesis of major depression. Bioessays. 2018;40(9):e1800027.
Lee P, Yacyshyn BR, Yacyshyn MB. Gut microbiota and obesity: an opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes Obes Metab. 2019;21(3):479‐490.
Pahwa R, Balderas M, Jialal I, Chen X, Luna RA, Devaraj S. Gut microbiome and inflammation: a study of diabetic inflammasome‐knockout mice. J Diabetes Res. 2017;2017:6519785.
Safari Z, Gérard P. The links between the gut microbiome and non‐alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci. 2019;76(8):1541‐1558.
Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “western‐lifestyle” inflammatory diseases. Immunity. 2014;40(6):833‐842.
Thorburn AN, Mckenzie CI, Shen Sj, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320.
Vieira AT, Macia L, Galvão I, et al. A role for gut microbiota and the metabolite‐sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol. 2015;67(6):1646‐1656.
Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183‐1196.
Kim RY, Pinkerton JW, Gibson PG, Cooper MA, Horvat JC, Hansbro PM. Inflammasomes in COPD and neutrophilic asthma. Thorax. 2015;70(12):1199‐1201.
Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung. Mol Immunol. 2017;86:44‐55.
Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med. 2019;7(10):907‐920.
Budden KF, Gellatly SL, Wood DLA, et al. Emerging pathogenic links between microbiota and the gut‐lung axis. Nat Rev Microbiol. 2017;15(1):55‐63.
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐beta. Mol Cell. 2002;10(2):417‐426.
Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229‐265.
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821‐832.
Stutz A, Golenbock DT, Latz E. Inflammasomes: too big to miss. J Clin Invest. 2009;119(12):3502‐3511.
Bürckstümmer T, Baumann C, Blüml S, et al. An orthogonal proteomic‐genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009;10(3):266‐272.
Fernandes‐Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509‐513.
Hornung V, Ablasser A, Charrel‐Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase‐1‐activating inflammasome with ASC. Nature. 2009;458(7237):514‐518.
Mcgeough MD, Wree A, Inzaugarat ME, et al. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J Clin Invest. 2017;127(12):4488‐4497.
Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci. 2017;130(23):3955‐3963.
Yi YS. Caspase‐11 non‐canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage‐mediated inflammatory responses. Immunology. 2017;152(2):207‐217.
Mamantopoulos M, Frising UC, Asaoka T, Van Loo G, Lamkanfi M, Wullaert A. El Tor biotype vibrio cholerae activates the caspase‐11‐independent canonical Nlrp3 and pyrin inflammasomes. Front Immunol. 2019;10:2463.
Seo SU, Kamada N, Muñoz‐Planillo R, et al. Distinct commensals induce interleukin‐1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015;42(4):744‐755.
Umiker B, Lee HH, Cope J, et al. The NLRP3 inflammasome mediates DSS‐induced intestinal inflammation in Nod2 knockout mice. Innate Immun. 2019;25(2):132‐143.
Sabui S, Skupsky J, Kapadia R, et al. Tamoxifen‐induced, intestinal‐specific deletion of Slc5a6 in adult mice leads to spontaneous inflammation: involvement of NF‐kappaB, NLRP3, and gut microbiota. Am J Physiol Gastrointest Liver Physiol. 2019;317(4):G518‐G530.
Feng Y, Huang Y, Wang Y, Wang P, Song H, Wang F. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One. 2019;14(6):e0218384.
Lowe PP, Gyongyosi B, Satishchandran A, et al. Reduced gut microbiome protects from alcohol‐induced neuroinflammation and alters intestinal and brain inflammasome expression. J Neuroinflamm. 2018;15(1):298.
Jia L, Chen H, Yang J, et al. Combinatory antibiotic treatment protects against experimental acute pancreatitis by suppressing gut bacterial translocation to pancreas and inhibiting NLRP3 inflammasome pathway. Innate Immun. 2020;26(1):48‐61.
Lendermon EA, Coon TA, Bednash JS, Weathington NM, Mcdyer JF, Mallampalli RK. Azithromycin decreases NALP3 mRNA stability in monocytes to limit inflammasome‐dependent inflammation. Respir Res. 2017;18(1):131.
Dickson RP, Erb‐Downward JR, Falkowski NR, Hunter EM, Ashley SL, Huffnagle GB. The lung microbiota of healthy mice are highly variable, cluster by environment, and reflect variation in baseline lung innate immunity. Am J Respir Crit Care Med. 2018;198(4):497‐508.
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485‐498.
Shen SJ, Wong CH. Bugging inflammation: role of the gut microbiota. Clin Transl Immunol. 2016;5(4):e72.
Castro‐Dopico T, Dennison TW, Ferdinand JR, et al. Anti‐commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity. 2019;50(4):1099‐1114 e10.
Man SiM, Karki R, Sasai M, et al. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase‐11‐NLRP3 inflammasomes. Cell. 2016;167(2):382‐396 e17.
Currey N, Jahan Z, Caldon CE, et al. Mouse model of mutated in colorectal cancer gene deletion reveals novel pathways in inflammation and cancer. Cell Mol Gastroenterol Hepatol. 2019;7(4):819‐839.
Mak'Anyengo R, et al. Nlrp3‐dependent IL‐1beta inhibits CD103+ dendritic cell differentiation in the gut. JCI Insight. 2018;3(5).
Engler DB, Leonardi I, Hartung ML, et al. Helicobacter pylori‐specific protection against inflammatory bowel disease requires the NLRP3 inflammasome and IL‐18. Inflamm Bowel Dis. 2015;21(4):854‐861.
Ng GZ, Menheniott TR, Every AL, et al. The MUC1 mucin protects against Helicobacter pylori pathogenesis in mice by regulation of the NLRP3 inflammasome. Gut. 2016;65(7):1087‐1099.
Latiano A, Palmieri O, Pastorelli L, et al. Associations between genetic polymorphisms in IL‐33, IL1R1 and risk for inflammatory bowel disease. PLoS One. 2013;8(4):e62144.
Pellegrini C, Antonioli L, Lopez‐Castejon G, Blandizzi C, Fornai M. Canonical and non‐canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol. 2017;8:36.
Xie S, Yang T, Wang Z, et al. Astragaloside IV attenuates sepsis‐induced intestinal barrier dysfunction via suppressing RhoA/NLRP3 inflammasome signaling. Int Immunopharmacol. 2020;78:106066.
Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat Genet. 2009;41(1):71‐76.
Pizarro TT, Michie MH, Bentz M, et al. IL‐18, a novel immunoregulatory cytokine, is up‐regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162(11):6829‐6835.
Monteleone G, Trapasso F, Parrello T, et al. Bioactive IL‐18 expression is up‐regulated in Crohn's disease. J Immunol. 1999;163(1):143‐147.
Zhen Y, Zhang H. NLRP3 inflammasome and inflammatory bowel disease. Front Immunol. 2019;10:276.
Mao L, Kitani A, Strober W, Fuss IJ. The role of NLRP3 and IL‐1beta in the pathogenesis of inflammatory bowel disease. Front Immunol. 2018;9:2566.
Zaki MH, Lamkanfi M, Kanneganti TD. The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol. 2011;32(4):171‐179.
Ranson N, Kunde D, Eri R. Regulation and sensing of inflammasomes and their impact on intestinal health. Int J Mol Sci. 2017;18(11).
Allen IC, Tekippe EM, Woodford RMT, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis‐associated cancer. J Exp Med. 2010;207(5):1045‐1056.
Dupaul‐Chicoine J, Yeretssian G, Doiron K, et al. Control of intestinal homeostasis, colitis, and colitis‐associated colorectal cancer by the inflammatory caspases. Immunity. 2010;32(3):367‐378.
Hirota SA, Ng J, Lueng A, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis. 2011;17(6):1359‐1372.
Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 2010;32(3):379‐391.
Zhang J, Fu S, Sun S, Li Z, Guo B. Inflammasome activation has an important role in the development of spontaneous colitis. Mucosal Immunol. 2014;7(5):1139‐1150.
Bauer C, Duewell P, Lehr HA, Endres S, Schnurr M. Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of genetic and environmental factors. Dig Dis. 2012;30:82‐90.
Bauer C, Duewell P, Mayer C, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut. 2010;59(9):1192‐1199.
Dubois H, Sorgeloos F, Sarvestani ST, et al. Nlrp3 inflammasome activation and Gasdermin D‐driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLoS Pathog. 2019;15(4):e1007709.
Williams TM, Leeth RA, Rothschild DE, et al. Caspase‐11 attenuates gastrointestinal inflammation and experimental colitis pathogenesis. Am J Physiol Gastrointest Liver Physiol. 2015;308(2):G139‐50.
Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut‐lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173‐S2180.
Kraft SC. Unexplained bronchopulmonary disease with inflammatory bowel disease. Arch Intern Med. 1976;136(4):454‐459.
Ji XQ. Pulmonary manifestations of inflammatory bowel disease. World J Gastroenterol. 2014;20(37):13501‐13511.
Mansi A, Cucchiara S, Greco L, et al. Bronchial hyperresponsiveness in children and adolescents with Crohn's disease. Am J Respir Crit Care Med. 2000;161(3 Pt 1):1051‐1054.
Mateer SW, Maltby S, Marks E, et al. Potential mechanisms regulating pulmonary pathology in inflammatory bowel disease. J Leukoc Biol. 2015;98(5):727‐737.
Jones B, Donovan C, Liu G, et al. Animal models of COPD: what do they tell us? Respirology. 2017;22(1):21‐32.
Terzikhan N, Verhamme KMC, Hofman A, Stricker BH, Brusselle GG, Lahousse L. Prevalence and incidence of COPD in smokers and non‐smokers: the Rotterdam Study. Eur J Epidemiol. 2016;31(8):785‐792.
Laniado‐Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. Int J Environ Res Public Health. 2009;6(1):209‐224.
Fricker M, Goggins BJ, Mateer S, et al. Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight. 2018;3(3).
Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. 2016;65(4):575‐583.
Mateer SW, Mathe A, Bruce J, et al. IL‐6 drives neutrophil‐mediated pulmonary inflammation associated with bacteremia in murine models of colitis. Am J Pathol. 2018;188(7):1625‐1639.
Liu G, Mateer SW, Hsu A, et al. Platelet activating factor receptor regulates colitis‐induced pulmonary inflammation through the NLRP3 inflammasome. Mucosal Immunol. 2019;12(4):862‐873.
Nakamura T. Growth factor and growth inhibitor for hepatocyte proliferation. Gan to Kagaku Ryoho. 1989;16(3 Pt 2):481‐488.
Bingula R, Filaire M, Radosevic‐Robin N, et al. Desired turbulence? Gut‐lung axis, immunity, and lung cancer. J Oncol. 2017;2017:5035371.
Zhong Y, Kinio A, Saleh M. Functions of NOD‐like receptors in human diseases. Front Immunol. 2013;4:333.
Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018;17(1):158.
Shukla SD, Sohal SS, OʼToole RF, Eapen MS, Walters EH. Platelet activating factor receptor: gateway for bacterial chronic airway infection in chronic obstructive pulmonary disease and potential therapeutic target. Expert Rev Respir Med. 2015;9(4):473‐485.
Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674‐677.
Wang S, Zhao J, Wang H, Liang Y, Yang N, Huang Y. Blockage of P2X7 attenuates acute lung injury in mice by inhibiting NLRP3 inflammasome. Int Immunopharmacol. 2015;27(1):38‐45.
Hansbro PM, Kim RY, Starkey MR, et al. Mechanisms and treatments for severe, steroid‐resistant allergic airway disease and asthma. Immunol Rev. 2017;278(1):41‐62.
Kuriakose T, Kanneganti TD. Regulation and functions of NLRP3 inflammasome during influenza virus infection. Mol Immunol. 2017;86:56‐64.
Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009;187(1):61‐70.
Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep. 2016;6:27912.
Pires S, Parker D. IL‐1beta activation in response to Staphylococcus aureus lung infection requires inflammasome‐dependent and independent mechanisms. Eur J Immunol. 2018;48(10):1707‐1716.
Robinson KM, Ramanan K, Clay ME, et al. The inflammasome potentiates influenza/Staphylococcus aureus superinfection in mice. JCI Insight. 2018;3(7).
Cho SJ, Plataki M, Mitzel D, Lowry G, Rooney K, Stout‐Delgado H. Decreased NLRP3 inflammasome expression in aged lung may contribute to increased susceptibility to secondary Streptococcus pneumoniae infection. Exp Gerontol. 2018;105:40‐46.
Gugliandolo E, Fusco R, Ginestra G, et al. Involvement of TLR4 and PPAR‐alpha receptors in host response and NLRP3 inflammasome activation, against pulmonary infection with Pseudomonas aeruginosa. Shock. 2019;51(2):221‐227.
Chen ACH, Tran HB, Xi Y, et al. Multiple inflammasomes may regulate the interleukin‐1‐driven inflammation in protracted bacterial bronchitis. ERJ Open Res. 2018;4(1).
Rotta Detto Loria J, Rohmann K, Droemann D, et al. Nontypeable haemophilus influenzae infection upregulates the NLRP3 inflammasome and leads to caspase‐1‐dependent secretion of interleukin‐1beta ‐ a possible pathway of exacerbations in COPD. PLoS One. 2013;8(6):e66818.
Fang R, Du H, Lei G, et al. NLRP3 inflammasome plays an important role in caspase‐1 activation and IL‐1beta secretion in macrophages infected with Pasteurella multocida. Vet Microbiol. 2019;231:207‐213.
Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid‐resistant asthma. Eur Respir Rev. 2019;28(153).
Kim RY, Rae B, Neal R, Donovan C, et al. Elucidating novel disease mechanisms in severe asthma. Clin Transl Immunol. 2016;5(7):e91.
Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 inflammasome‐mediated, IL‐1beta‐dependent responses in severe, steroid‐resistant asthma. Am J Respir Crit Care Med. 2017;196(3):283‐297.
Baines KJ, Simpson JL, Wood LG, Scott RJ, Gibson PG. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J Allergy Clin Immunol. 2011;127(1):153‐160, 160 e1‐9.
Simpson JL, Phipps S, Baines KJ, Oreo KM, Gunawardhana L, Gibson PG. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur Respir J. 2014;43(4):1067‐1076.
Wood LG, Li Q, Scott HA, et al. Saturated fatty acids, obesity, and the nucleotide oligomerization domain‐like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J Allergy Clin Immunol. 2019;143(1):305‐315.
Madouri F, Guillou N, Fauconnier L, et al. Caspase‐1 activation by NLRP3 inflammasome dampens IL‐33‐dependent house dust mite‐induced allergic lung inflammation. J Mol Cell Biol. 2015;7(4):351‐365.
Frati F, Salvatori C, Incorvaia C, et al. The role of the microbiome in asthma: the gut(‐)lung axis. Int J Mol Sci. 2018;20(1).
Ko FW, Chan KP, Hui DS, et al. Acute exacerbation of COPD. Respirology. 2016;21(7):1152‐1165.
Hirota JA, Gold MJ, Hiebert PR, et al. The nucleotide‐binding domain, leucine‐rich repeat protein 3 inflammasome/IL‐1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 mum. Am J Respir Cell Mol Biol. 2015;52(1):96‐105.
Hirota JA, Hirota SA, Warner SM, et al. The airway epithelium nucleotide‐binding domain and leucine‐rich repeat protein 3 inflammasome is activated by urban particulate matter. J Allergy Clin Immunol. 2012;129(4):1116‐1125 e6.
Di Stefano A, Caramori G, Barczyk A, et al. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax. 2014;69(6):516‐524.
Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15(8):727‐737.
Han S, Jerome JA, Gregory AD, Mallampalli RK. Cigarette smoke destabilizes NLRP3 protein by promoting its ubiquitination. Respir Res. 2017;18(1):2.
Eltom S, Belvisi MG, Stevenson CS, et al. Role of the inflammasome‐caspase1/11‐IL‐1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS One. 2014;9(11):e112829.
Yang W, Ni H, Wang H, Gu H. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. Int J Clin Exp Pathol. 2015;8(10):13209‐13216.
Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol. 2019;10:2538.
فهرسة مساهمة: Keywords: NLRP3 inflammasome; gut; lung; microbiome; microbiota
المشرفين على المادة: 0 (Air Pollutants)
0 (Furans)
0 (Heterocyclic Compounds, 4 or More Rings)
0 (Indenes)
0 (Inflammasomes)
0 (NLR Family, Pyrin Domain-Containing 3 Protein)
0 (Nlrp3 protein, mouse)
0 (Sulfonamides)
0 (Sulfones)
6RS86E2BWQ (N-(1,2,3,5,6,7-hexahydro-S-indacen-4-ylcarbamoyl)-4-(2-hydroxy-2-propanyl)-2-furansulfonamide)
تواريخ الأحداث: Date Created: 20210106 Date Completed: 20210209 Latest Revision: 20211214
رمز التحديث: 20231215
DOI: 10.1002/JLB.3MR0720-472RR
PMID: 33405294
قاعدة البيانات: MEDLINE
الوصف
تدمد:1938-3673
DOI:10.1002/JLB.3MR0720-472RR