دورية أكاديمية

The RNA-binding protein LARP1 is dispensable for pancreatic β-cell function and mass.

التفاصيل البيبلوغرافية
العنوان: The RNA-binding protein LARP1 is dispensable for pancreatic β-cell function and mass.
المؤلفون: Werneck-de-Castro JP; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.; Miami VA Health Care System, Miami, FL, 33136, USA., Peçanha FLM; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA., Silvestre DH; Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, 21941090, Brazil., Bernal-Mizrachi E; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. ebernalm@med.miami.edud.; Miami VA Health Care System, Miami, FL, 33136, USA. ebernalm@med.miami.edud.
المصدر: Scientific reports [Sci Rep] 2021 Jan 22; Vol. 11 (1), pp. 2079. Date of Electronic Publication: 2021 Jan 22.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Autoantigens/*physiology , Insulin-Secreting Cells/*physiology , RNA-Binding Proteins/*physiology , Ribonucleoproteins/*physiology, Animals ; Autoantigens/genetics ; Autoantigens/metabolism ; Blood Glucose/metabolism ; Diet, High-Fat ; Female ; Homeostasis ; Humans ; Insulin-Secreting Cells/cytology ; Male ; Mechanistic Target of Rapamycin Complex 1/metabolism ; Mice ; Mice, Knockout ; Protein Binding ; RNA-Binding Proteins/genetics ; RNA-Binding Proteins/metabolism ; Ribonucleoproteins/genetics ; Ribonucleoproteins/metabolism ; Up-Regulation ; SS-B Antigen
مستخلص: Mechanistic target of rapamycin complex 1 (mTORC1) deficiency or chronic hyperactivation in pancreatic β-cells leads to diabetes. mTORC1 complexes with La-related protein 1 (LARP1) to specifically regulate the expression of 5' terminal oligopyrimidine tract (5'TOP) mRNAs which encode proteins of the translation machinery and ribosome biogenesis. Here we show that LARP1 is the most expressed LARP in mouse islets and human β-cells, being 2-4-fold more abundant than LARP1B, a member of the family that also interacts with mTORC1. Interestingly, β-cells from diabetic patients have higher LARP1 and LARP1B expression. However, specific deletion of Larp1 gene in β-cells (β-Larp1KO mice) did not impair insulin secretion and glucose metabolism in male and female mice. High fat or high branched-chain amino acid (BCAA) diets did not disturb glucose homeostasis compared to control littermates up to 8 weeks; BCAA diet slightly impaired glucose tolerance in the β-Larp1KO mice at 16 weeks. However, no differences in plasma insulin levels, non-fasting glycemia and β-cell mass were observed in the β-Larp1KO mice. In conclusion, LARP1 is the most abundant LARP in mouse islets and human β-cells, and it is upregulated in diabetic subjects. However, genetically disruption of Larp1 gene did not impact glucose homeostasis in basal and diabetogenic conditions, suggesting no major role for LARP1 in β-cells.
References: Alejandro, E. U., Gregg, B., Blandino-Rosano, M., Cras-Meneur, C. & Bernal-Mizrachi, E. Natural history of beta-cell adaptation and failure in type 2 diabetes. Mol. Aspects Med. 42, 19–41. https://doi.org/10.1016/j.mam.2014.12.002 (2015). (PMID: 10.1016/j.mam.2014.12.00225542976)
Chang-Chen, K. J., Mullur, R. & Bernal-Mizrachi, E. Beta-cell failure as a complication of diabetes. Rev. Endocr. Metab. Disord. 9, 329–343. https://doi.org/10.1007/s11154-008-9101-5 (2008). (PMID: 10.1007/s11154-008-9101-5187770974456188)
Blandino-Rosano, M. et al. Loss of mTORC1 signalling impairs beta-cell homeostasis and insulin processing. Nat. Commun. 8, 16014. https://doi.org/10.1038/ncomms16014 (2017). (PMID: 10.1038/ncomms16014286996395510183)
Alejandro, E. U. et al. Overexpression of kinase-dead mTOR impairs glucose homeostasis by regulating insulin secretion and not beta-cell mass. Diabetes 66, 2150–2162. https://doi.org/10.2337/db16-1349 (2017). (PMID: 10.2337/db16-1349285464235521866)
Blandino-Rosano, M. et al. 4E-BP2/SH2B1/IRS2 are part of a novel feedback loop that controls beta-cell mass. Diabetes 65, 2235–2248. https://doi.org/10.2337/db15-1443 (2016). (PMID: 10.2337/db15-1443272174874955981)
Ni, Q. et al. Raptor regulates functional maturation of murine beta cells. Nat. Commun. 8, 15755. https://doi.org/10.1038/ncomms15755 (2017). (PMID: 10.1038/ncomms15755285984245472774)
Helman, A. et al. A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab. 31, 1004-1016e1005. https://doi.org/10.1016/j.cmet.2020.04.004 (2020). (PMID: 10.1016/j.cmet.2020.04.004323750227480404)
Jaafar, R. et al. mTORC1 to AMPK switching underlies beta-cell metabolic plasticity during maturation and diabetes. J. Clin. Invest. 129, 4124–4137. https://doi.org/10.1172/JCI127021 (2019). (PMID: 10.1172/JCI127021312654356763225)
Ardestani, A., Lupse, B., Kido, Y., Leibowitz, G. & Maedler, K. mTORC1 signaling: A double-edged sword in diabetic beta cells. Cell Metab. 27, 314–331. https://doi.org/10.1016/j.cmet.2017.11.004 (2018). (PMID: 10.1016/j.cmet.2017.11.00429275961)
Bartolome, A. et al. Pancreatic beta-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes 63, 2996–3008. https://doi.org/10.2337/db13-0970 (2014). (PMID: 10.2337/db13-097024740570)
Shimobayashi, M. & Hall, M. N. Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15, 155–162. https://doi.org/10.1038/nrm3757 (2014). (PMID: 10.1038/nrm375724556838)
Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310. https://doi.org/10.1038/nature14190 (2015). (PMID: 10.1038/nature14190255925354313349)
Hinnebusch, A. G., Ivanov, I. P. & Sonenberg, N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science 352, 1413–1416. https://doi.org/10.1126/science.aad9868 (2016). (PMID: 10.1126/science.aad9868273130387422601)
Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113. https://doi.org/10.1038/nature11083 (2012). (PMID: 10.1038/nature11083225520983347774)
Jefferies, H. B. et al. Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704. https://doi.org/10.1093/emboj/16.12.3693 (1997). (PMID: 10.1093/emboj/16.12.369392188101169993)
Meyuhas, O. & Kahan, T. The race to decipher the top secrets of TOP mRNAs. Biochim. Biophys. Acta 801–811, 2015. https://doi.org/10.1016/j.bbagrm.2014.08.015 (1849). (PMID: 10.1016/j.bbagrm.2014.08.015)
Terada, N. et al. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc. Natl. Acad. Sci. USA 91, 11477–11481. https://doi.org/10.1073/pnas.91.24.11477 (1994). (PMID: 10.1073/pnas.91.24.11477797208745254)
Jefferies, H. B., Reinhard, C., Kozma, S. C. & Thomas, G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc. Natl. Acad. Sci. USA 91, 4441–4445. https://doi.org/10.1073/pnas.91.10.4441 (1994). (PMID: 10.1073/pnas.91.10.4441818392843801)
Fonseca, B. D. et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J. Biol. Chem. 290, 15996–16020. https://doi.org/10.1074/jbc.M114.621730 (2015). (PMID: 10.1074/jbc.M114.621730259400914481205)
Mura, M. et al. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene 34, 5025–5036. https://doi.org/10.1038/onc.2014.428 (2015). (PMID: 10.1038/onc.2014.42825531318)
Deragon, J. M. & Bousquet-Antonelli, C. The role of LARP1 in translation and beyond. Wiley Interdiscip. Rev. RNA 6, 399–417. https://doi.org/10.1002/wrna.1282 (2015). (PMID: 10.1002/wrna.128225892282)
Tcherkezian, J. et al. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5’TOP mRNA translation. Genes Dev. 28, 357–371. https://doi.org/10.1101/gad.231407.113 (2014). (PMID: 10.1101/gad.231407.113245327143937514)
Hong, S. et al. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. Elife https://doi.org/10.7554/eLife.25237 (2017). (PMID: 10.7554/eLife.25237292311715777821)
Lahr, R. M. et al. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs. Elife https://doi.org/10.7554/eLife.24146 (2017). (PMID: 10.7554/eLife.24146283791365419741)
Bousquet-Antonelli, C. & Deragon, J. M. A comprehensive analysis of the La-motif protein superfamily. RNA 15, 750–764. https://doi.org/10.1261/rna.1478709 (2009). (PMID: 10.1261/rna.1478709192995482673062)
Berman, A. J. et al. Controversies around the function of LARP1. RNA Biol. https://doi.org/10.1080/15476286.2020.1733787 (2020). (PMID: 10.1080/15476286.2020.1733787322339867928164)
Aoki, K. et al. LARP1 specifically recognizes the 3’ terminus of poly(A) mRNA. FEBS Lett 587, 2173–2178. https://doi.org/10.1016/j.febslet.2013.05.035 (2013). (PMID: 10.1016/j.febslet.2013.05.03523711370)
Burrows, C. et al. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Res. 38, 5542–5553. https://doi.org/10.1093/nar/gkq294 (2010). (PMID: 10.1093/nar/gkq294204308262938220)
Blodgett, D. M. et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64, 3172–3181. https://doi.org/10.2337/db15-0039 (2015). (PMID: 10.2337/db15-0039259314734542439)
Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and Type 2 diabetes. Cell Metab. 24, 593–607. https://doi.org/10.1016/j.cmet.2016.08.020 (2016). (PMID: 10.1016/j.cmet.2016.08.020276676675069352)
Bozadjieva, N. et al. Loss of mTORC1 signaling alters pancreatic alpha cell mass and impairs glucagon secretion. J. Clin. Invest. 127, 4379–4393. https://doi.org/10.1172/JCI90004 (2017). (PMID: 10.1172/JCI90004291063875707167)
Sinagoga, K. L. et al. Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development 144, 2402–2414. https://doi.org/10.1242/dev.146316 (2017). (PMID: 10.1242/dev.146316285767735536865)
Stavraka, C. & Blagden, S. The La-related proteins, a family with connections to cancer. Biomolecules 5, 2701–2722. https://doi.org/10.3390/biom5042701 (2015). (PMID: 10.3390/biom5042701265013404693254)
Condon, K. J. & Sabatini, D. M. Nutrient regulation of mTORC1 at a glance. J. Cell Sci. https://doi.org/10.1242/jcs.222570 (2019). (PMID: 10.1242/jcs.222570317229606857595)
Yuan, T. et al. Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes. Diabetologia 60, 668–678. https://doi.org/10.1007/s00125-016-4188-9 (2017). (PMID: 10.1007/s00125-016-4188-928004151)
Philippe, L., Vasseur, J. J., Debart, F. & Thoreen, C. C. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region. Nucleic Acids Res. 46, 1457–1469. https://doi.org/10.1093/nar/gkx1237 (2018). (PMID: 10.1093/nar/gkx123729244122)
Xu, Z. et al. LARP1 is regulated by the XIST/miR-374a axis and functions as an oncogene in non-small cell lung carcinoma. Oncol. Rep. 38, 3659–3667. https://doi.org/10.3892/or.2017.6040 (2017). (PMID: 10.3892/or.2017.604029039571)
Ye, L. et al. Overexpression of LARP1 predicts poor prognosis of colorectal cancer and is expected to be a potential therapeutic target. Tumour Biol. 37, 14585–14594. https://doi.org/10.1007/s13277-016-5332-3 (2016). (PMID: 10.1007/s13277-016-5332-327614686)
Hopkins, T. G. et al. The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Res. 44, 1227–1246. https://doi.org/10.1093/nar/gkv1515 (2016). (PMID: 10.1093/nar/gkv151526717985)
Katsumoto, K. & Grapin-Botton, A. Nutrients men-TOR beta-cells to adulthood. Dev. Cell 54, 140–141. https://doi.org/10.1016/j.devcel.2020.06.028 (2020). (PMID: 10.1016/j.devcel.2020.06.02832693054)
Philippe, L., van den Elzen, A. M. G., Watson, M. J. & Thoreen, C. C. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5’ TOP motifs. Proc. Natl. Acad. Sci. USA 117, 5319–5328. https://doi.org/10.1073/pnas.1912864117 (2020). (PMID: 10.1073/pnas.1912864117320941907071917)
Werneck-de-Castro, J. P., Blandino-Rosano, M., Hilfiker-Kleiner, D. & Bernal-Mizrachi, E. Glucose stimulates microRNA-199 expression in murine pancreatic beta-cells. J. Biol. Chem. 295, 1261–1270. https://doi.org/10.1074/jbc.RA119.010356 (2020). (PMID: 10.1074/jbc.RA119.01035631882540)
Mateus Goncalves, L., Pereira, E., Werneck de Castro, J. P., Bernal-Mizrachi, E. & Almaca, J. Islet pericytes convert into profibrotic myofibroblasts in a mouse model of islet vascular fibrosis. Diabetologia 63, 1564–1575. https://doi.org/10.1007/s00125-020-05168-7 (2020). (PMID: 10.1007/s00125-020-05168-732424539)
معلومات مُعتمدة: I01 BX002728 United States BX BLRD VA; R01 DK073716 United States DK NIDDK NIH HHS; R01 DK084236 United States DK NIDDK NIH HHS; R01-DK073716 United States DK NIDDK NIH HHS
المشرفين على المادة: 0 (Autoantigens)
0 (Blood Glucose)
0 (Larp1 protein, mouse)
0 (RNA-Binding Proteins)
0 (Ribonucleoproteins)
EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
تواريخ الأحداث: Date Created: 20210123 Date Completed: 20211013 Latest Revision: 20231213
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7822907
DOI: 10.1038/s41598-021-81457-4
PMID: 33483593
قاعدة البيانات: MEDLINE