دورية أكاديمية

Intracellular Staphylococcus aureus and host cell death pathways.

التفاصيل البيبلوغرافية
العنوان: Intracellular Staphylococcus aureus and host cell death pathways.
المؤلفون: Soe YM; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia., Bedoui S; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia., Stinear TP; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia., Hachani A; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
المصدر: Cellular microbiology [Cell Microbiol] 2021 May; Vol. 23 (5), pp. e13317. Date of Electronic Publication: 2021 Feb 24.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: Hindawi Country of Publication: India NLM ID: 100883691 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1462-5822 (Electronic) Linking ISSN: 14625814 NLM ISO Abbreviation: Cell Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2022- : Mumbai : Hindawi
Original Publication: Oxford : Wiley-Blackwell, c1999-
مواضيع طبية MeSH: Apoptosis* , Host-Pathogen Interactions*, Staphylococcal Infections/*microbiology , Staphylococcus aureus/*pathogenicity , Virulence Factors/*metabolism, Animals ; Epithelium/microbiology ; Ferroptosis ; Humans ; Necroptosis ; Neutrophils/physiology ; Pathogen-Associated Molecular Pattern Molecules/metabolism ; Pyroptosis ; Staphylococcus aureus/metabolism ; Virulence
مستخلص: Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
(© 2021 John Wiley & Sons Ltd.)
References: Acker, K. P., Wong Fok Lung, T., West, E., Craft, J., Narechania, A., Smith, H., … Prince, A. (2019). Strains of Staphylococcus aureus that colonize and infect Skin Harbor mutations in metabolic genes. iScience, 19, 281-290. https://doi.org/10.1016/j.isci.2019.07.037.
Allen, J. P., Snitkin, E., Pincus, N. B., & Hauser, A. R. (2021). Forest and trees: Exploring bacterial virulence with genome-wide association studies and machine learning. Trends in Microbiology, 20, 30317-30326. https://doi.org/10.1016/j.tim.2020.12.002.
Alnaseri, H., Arsic, B., Schneider, J. E. T., Kaiser, J. C., Scinocca, Z. C., Heinrichs, D. E., & McGavin, M. J. (2015). Inducible expression of a resistance-nodulation-division-type efflux pump in Staphylococcus aureus provides resistance to linoleic and Arachidonic acids. Journal of Bacteriology, 197, 1893-1905. https://doi.org/10.1128/JB.02607-14.
Amaral, E. P., Costa, D. L., Namasivayam, S., Riteau, N., Kamenyeva, O., Mittereder, L., … Sher, A. (2019). A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. The Journal of Experimental Medicine, 216, 556-570. https://doi.org/10.1084/jem.20181776.
Arts, R. J. W., Novakovic, B., ter Horst, R., Carvalho, A., Bekkering, S., Lachmandas, E., … Netea, M. G. (2016). Glutaminolysis and Fumarate accumulation integrate Immunometabolic and epigenetic programs in trained immunity. Cell Metabolism, 24, 807-819. https://doi.org/10.1016/j.cmet.2016.10.008.
Bantel, H., Sinha, B., Domschke, W., Peters, G., Schulze-Osthoff, K., & Jänicke, R. U. (2001). α-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. Journal of Cell Biology, 155, 637-648. https://doi.org/10.1083/jcb.200105081.
Bardoel, B. W., Vos, R., Bouman, T., Aerts, P. C., Bestebroer, J., Huizinga, E. G., … de Haas, C. J. C. (2012). Evasion of toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. Journal of Molecular Medicine, 90, 1109-1120. https://doi.org/10.1007/s00109-012-0926-8.
Baxt, L. A., Garza-Mayers, A. C., & Goldberg, M. B. (2013). Bacterial subversion of host innate immune pathways. Science, 340, 697-701. https://doi.org/10.1126/science.1235771.
Beavers, W. N., Monteith, A. J., Amarnath, V., Mernaugh, R. L., Roberts, L. J., Chazin, W. J., … Skaar, E. P. (2019). Arachidonic acid kills Staphylococcus aureus through a lipid peroxidation mechanism. MBio, 10, e01333-19. https://doi.org/10.1128/mBio.01333-19.
Becker, K. A., Fahsel, B., Kemper, H., Mayeres, J., Li, C., Wilker, B., … Gulbins, E. (2017). Staphylococcus aureus alpha-toxin disrupts endothelial-cell tight junctions via acid Sphingomyelinase and Ceramide. Infection and Immunity, 86(1), e00606-17. https://doi.org/10.1128/IAI.00606-17.
Bedoui, S., Herold, M. J., & Strasser, A. (2020). Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews. Molecular Cell Biology, 21, 678-695. https://doi.org/10.1038/s41580-020-0270-8.
Berends, E. T. M., Zheng, X., Zwack, E. E., Ménager, M. M., Cammer, M., Shopsin, B., & Torres, V. J. (2019). Staphylococcus aureus impairs the function of and kills human dendritic cells via the LukAB toxin. MBio, 10(1), e01918-18. https://doi.org/10.1128/mBio.01918-18.
Boldock, E., Surewaard, B. G. J., Shamarina, D., Na, M., Fei, Y., Ali, A., … Foster, S. J. (2018). Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 3, 881-890. https://doi.org/10.1038/s41564-018-0198-3.
Bouillot, S., Reboud, E., & Huber, P. (2018). Functional consequences of calcium influx promoted by bacterial pore-forming toxins. Toxins, 10, 387. https://doi.org/10.3390/toxins10100387.
Bravo-Santano, N., Ellis, J. K., Mateos, L. M., Calle, Y., Keun, H. C., Behrends, V., & Letek, M. (2018). Intracellular Staphylococcus aureus modulates host central carbon metabolism to activate autophagy. mSphere, 3, e00374-e00318. https://doi.org/10.1128/mSphere.00374-18.
Bravo-Santano, N., Stölting, H., Cooper, F., Bileckaja, N., Majstorovic, A., Ihle, N., … Letek, M. (2019). Host-directed kinase inhibitors act as novel therapies against intracellular Staphylococcus aureus. Scientific Reports, 9, 4876. https://doi.org/10.1038/s41598-019-41260-8.
Brinkmann, V. (2004). Neutrophil extracellular traps kill Bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385.
Bronesky, D., Wu, Z., Marzi, S., Walter, P., Geissmann, T., Moreau, K., … Romby, P. (2016). Staphylococcus aureus RNAIII and its Regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annual Review of Microbiology, 70, 299-316. https://doi.org/10.1146/annurev-micro-102215-095708.
Broz, P., & Dixit, V. M. (2016). Inflammasomes: Mechanism of assembly, regulation and signalling. Nature Reviews. Immunology, 16, 407-420. https://doi.org/10.1038/nri.2016.58.
Bu, S., Xie, Q., Chang, W., Huo, X., Chen, F., & Ma, X. (2013). LukS-PV induces mitochondrial-mediated apoptosis and G0/G1 cell cycle arrest in human acute myeloid leukemia THP-1 cells. The International Journal of Biochemistry & Cell Biology, 45, 1531-1537. https://doi.org/10.1016/j.biocel.2013.05.011.
Casadevall, A., & Fang, F. C. (2020). The intracellular pathogen concept. Molecular Microbiology, 113, 541-545. https://doi.org/10.1111/mmi.14421.
Chen, X., & Alonzo, F. (2019). Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proceedings of the National Academy of Sciences USA, 116, 3764-3773. https://doi.org/10.1073/pnas.1817248116.
Chi, C.-Y., Lin, C.-C., Liao, I.-C., Yao, Y.-C., Shen, F.-C., Liu, C.-C., & Lin, C.-F. (2014). Panton-valentine Leukocidin facilitates the escape of Staphylococcus aureus from human keratinocyte endosomes and induces apoptosis. The Journal of Infectious Diseases, 209, 224-235. https://doi.org/10.1093/infdis/jit445.
Chow, S. H., Deo, P., Yeung, A. T. Y., Kostoulias, X. P., Jeon, Y., Gao, M., … Naderer, T. (2020). Targeting NLRP3 and staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. Journal of Leukocyte Biology, 108, 967-981. https://doi.org/10.1002/JLB.4MA0420-497R.
Christmas, B. A. F., Rolfe, M. D., Rose, M., & Green, J. (2019). Staphylococcus aureus adaptation to aerobic low-redox-potential environments: Implications for an intracellular lifestyle. Microbiology, 165, 779-791. https://doi.org/10.1099/mic.0.000809.
Claro, T., Widaa, A., O'Seaghdha, M., Miajlovic, H., Foster, T. J., O'Brien, F. J., & Kerrigan, S. W. (2011). Staphylococcus aureus protein a binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One, 6, e18748. https://doi.org/10.1371/journal.pone.0018748.
Cohen, T. S., Jones-Nelson, O., Hotz, M., Cheng, L., Miller, L. S., Suzich, J. A., … Sellman, B. R. (2016). S. aureus blocks Efferocytosis of neutrophils by macrophages through the activity of its virulence factor alpha toxin. Scientific Reports, 6(1), 35466. https://doi.org/10.1038/srep35466.
Conrad, M., Kagan, V. E., Bayir, H., Pagnussat, G. C., Head, B., Traber, M. G., & Stockwell, B. R. (2018). Regulation of lipid peroxidation and ferroptosis in diverse species. Genes & Development, 32, 602-619. https://doi.org/10.1101/gad.314674.118.
Courcol, R. J., Trivier, D., Bissinger, M. C., Martin, G. R., & Brown, M. R. (1997). Siderophore production by Staphylococcus aureus and identification of iron-regulated proteins. Infection and Immunity, 65, 1944-1948. https://doi.org/10.1128/IAI.65.5.1944-1948.1997.
Craven, R. R., Gao, X., Allen, I. C., Gris, D., Wardenburg, J. B., McElvania-TeKippe, E., … Duncan, J. A. (2009). Staphylococcus aureus α-Hemolysin activates the NLRP3-Inflammasome in human and mouse Monocytic cells. PLoS One, 4, e7446. https://doi.org/10.1371/journal.pone.0007446.
Cruciani, M., Etna, M. P., Camilli, R., Giacomini, E., Percario, Z. A., Severa, M., … Coccia, E. M. (2017). Staphylococcus aureus Esx factors control human dendritic cell functions conditioning Th1/Th17 response. Frontiers in Cellular and Infection Microbiology, 7, 330. https://doi.org/10.3389/fcimb.2017.00330.
D'Cruz, A. A., Speir, M., Bliss-Moreau, M., Dietrich, S., Wang, S., Chen, A. A., … Croker, B. A. (2018). The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Science Signaling, 11, eaao1716. https://doi.org/10.1126/scisignal.aao1716.
Das, S., Lindemann, C., Young, B. C., Muller, J., Österreich, B., Ternette, N., … Fraunholz, M. J. (2016). Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proceedings of the National Academy of Sciences USA, 113, E3101-E3110. https://doi.org/10.1073/pnas.1520255113.
Das, T., Sa, G., Chattopadhyay, S., & Ray, P. K. (2002). Protein A-induced apoptosis of cancer cells is effected by soluble immune mediators. Cancer Immunology, Immunotherapy, 51, 376-380. https://doi.org/10.1007/s00262-002-0288-0.
Davis, B. K., Wen, H., & Ting, J. P.-Y. (2011). The Inflammasome NLRs in immunity, inflammation, and associated diseases. Annual Review of Immunology, 29, 707-735. https://doi.org/10.1146/annurev-immunol-031210-101405.
Demarco, B., Chen, K. W., & Broz, P. (2020). Cross talk between intracellular pathogens and cell death. Immunological Reviews, 297, 174-193. https://doi.org/10.1111/imr.12892.
Deretic, V., Saitoh, T., & Akira, S. (2013). Autophagy in infection, inflammation and immunity. Nature Reviews. Immunology, 13, 722-737. https://doi.org/10.1038/nri3532.
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., … Stockwell, B. R. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042.
Doran, A. C., Yurdagul, A., & Tabas, I. (2020). Efferocytosis in health and disease. Nature Reviews Immunology, 20(4), 254-267. https://doi.org/10.1038/s41577-019-0240-6.
Dziarski, R., & Gupta, D. (2005). Staphylococcus aureus peptidoglycan is a toll-like receptor 2 activator: A reevaluation. Infection and Immunity, 73, 5212-5216. https://doi.org/10.1128/IAI.73.8.5212-5216.2005.
Eng, V. V., Wemyss, M. A., & Pearson, J. S. (2020). The diverse roles of RIP kinases in host-pathogen interactions. Seminars in Cell & Developmental Biology., 109, 125-143. https://doi.org/10.1016/j.semcdb.2020.08.005.
Feng, H., & Stockwell, B. R. (2018). Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biology, 16, e2006203. https://doi.org/10.1371/journal.pbio.2006203.
Flannagan, R. S., Heit, B., & Heinrichs, D. E. (2016). Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cellular Microbiology, 18, 514-535. https://doi.org/10.1111/cmi.12527.
Foster, T. J., Geoghegan, J. A., Ganesh, V. K., & Höök, M. (2014). Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nature Reviews Microbiology, 12, 49-62. https://doi.org/10.1038/nrmicro3161.
Fournier, B. (2013). The function of TLR2 during staphylococcal diseases. Frontiers in Cellular and Infection Microbiology, 2, 167. https://doi.org/10.3389/fcimb.2012.00167.
Fournier, B., & Philpott, D. J. (2005). Recognition of Staphylococcus aureus by the innate immune system. Clinical Microbiology Reviews, 18, 521-540. https://doi.org/10.1128/CMR.18.3.521-540.2005.
Friedman, D. B., Stauff, D. L., Pishchany, G., Whitwell, C. W., Torres, V. J., & Skaar, E. P. (2006). Staphylococcus aureus redirects central metabolism to increase Iron availability. PLoS Pathogens, 2, e87. https://doi.org/10.1371/journal.ppat.0020087.
Gabryszewski, S. J., Wong Fok Lung, T., Annavajhala, M. K., Tomlinson, K. L., Riquelme, S. A., Khan, I. N., … Prince, A. (2019). Metabolic adaptation in methicillin-resistant Staphylococcus aureus pneumonia. American Journal of Respiratory Cell and Molecular Biology, 61, 185-197. https://doi.org/10.1165/rcmb.2018-0389OC.
Galluzzi, L., Pietrocola, F., Levine, B., & Kroemer, G. (2014). Metabolic control of autophagy. Cell, 159, 1263-1276. https://doi.org/10.1016/j.cell.2014.11.006.
Gan, J., Giogha, C., & Hartland, E. L. (2021). Molecular mechanisms employed by enteric bacterial pathogens to antagonise host innate immunity. Current Opinion in Microbiology, 59, 58-64. https://doi.org/10.1016/j.mib.2020.07.015.
Gao, W., Monk, I. R., Tobias, N. J., Gladman, S. L., Seemann, T., Stinear, T. P., & Howden, B. P. (2015). Large tandem chromosome expansions facilitate niche adaptation during persistent infection with drug-resistant Staphylococcus aureus. Microbial Genomics, 1, e000026. https://doi.org/10.1099/mgen.0.000026.
Gaudet, R. G., Bradfield, C. J., & MacMicking, J. D. (2016). Evolution of cell-autonomous effector mechanisms in macrophages versus non-immune cells. Microbiology Spectrum, 4(6). https://doi.org/10.1128/microbiolspec.MCHD-0050-2016.
Genestier, A.-L., Michallet, M.-C., Prévost, G., Bellot, G., Chalabreysse, L., Peyrol, S., … Genestier, L. (2005). Staphylococcus aureus Panton-valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. The Journal of Clinical Investigation, 115, 3117-3127. https://doi.org/10.1172/JCI22684.
Giebeler, N., & Zigrino, P. (2016). A disintegrin and metalloprotease (ADAM): Historical overview of their functions. Toxins, 8, 122. https://doi.org/10.3390/toxins8040122.
Gonzalez-Juarbe, N., Bradley, K. M., Riegler, A. N., Reyes, L. F., Brissac, T., Park, S.-S., … Orihuela, C. J. (2018). Bacterial pore-forming toxins promote the activation of Caspases in parallel to Necroptosis to enhance Alarmin release and inflammation during pneumonia. Scientific Reports, 8, 5846. https://doi.org/10.1038/s41598-018-24210-8.
González-Juarbe, N., Gilley, R. P., Hinojosa, C. A., Bradley, K. M., Kamei, A., Gao, G., … Orihuela, C. J. (2015). Pore-forming toxins induce macrophage Necroptosis during acute bacterial pneumonia. PLoS Pathogens, 11, e1005337. https://doi.org/10.1371/journal.ppat.1005337.
Gor, V., Takemura, A. J., Nishitani, M., Higashide, M., Medrano Romero, V., Ohniwa, R. L., & Morikawa, K. (2019). Finding of Agr phase variants in Staphylococcus aureus. MBio, 10(4), e00796-19. https://doi.org/10.1128/mBio.00796-19.
Greenlee-Wacker, M. C., Kremserová, S., & Nauseef, W. M. (2017). Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus. Blood, 129, 3237-3244. https://doi.org/10.1182/blood-2017-02-766253.
Greenlee-Wacker, M. C., Rigby, K. M., Kobayashi, S. D., Porter, A. R., DeLeo, F. R., & Nauseef, W. M. (2014). Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage Efferocytosis and induces programmed necrosis. The Journal of Immunology, 192(10), 4709-4717. https://doi.org/10.4049/jimmunol.1302692.
Guérillot, R., Kostoulias, X., Donovan, L., Li, L., Carter, G. P., Hachani, A., … Howden, B. P. (2019). Unstable chromosome rearrangements in Staphylococcus aureus cause phenotype switching associated with persistent infections. Proceedings. National Academy of Sciences. United States of America, 116, 20135-20140. https://doi.org/10.1073/pnas.1904861116.
Hachani, A., Wood, T. E., & Filloux, A. (2016). Type VI secretion and anti-host effectors. Current Opinion in Microbiology, 29, 81-93. https://doi.org/10.1016/j.mib.2015.11.006.
Häffner, N., Bär, J., Dengler Haunreiter, V., Mairpady Shambat, S., Seidl, K., Crosby, H. A., … Zinkernagel, A. S. (2020). Intracellular environment and agr system affect Colony size heterogeneity of Staphylococcus aureus. Frontiers in Microbiology, 11, 1415. https://doi.org/10.3389/fmicb.2020.01415.
Hanzelmann, D., Joo, H.-S., Franz-Wachtel, M., Hertlein, T., Stevanovic, S., Macek, B., … Peschel, A. (2016). Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nature Communications, 7, 12304. https://doi.org/10.1038/ncomms12304.
Hara, H., Seregin, S. S., Yang, D., Fukase, K., Chamaillard, M., Alnemri, E. S., … Núñez, G. (2018). The NLRP6 Inflammasome recognizes Lipoteichoic acid and regulates gram-positive pathogen infection. Cell, 175, 1651-1664.e14. https://doi.org/10.1016/j.cell.2018.09.047.
Haslinger, B., Strangfeld, K., Peters, G., Schulze-Osthoff, K., & Sinha, B. (2003). Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: Role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cellular Microbiology, 5, 729-741. https://doi.org/10.1046/j.1462-5822.2003.00317.x.
He, S., Liang, Y., Shao, F., & Wang, X. (2011). Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proceedings of the National Academy of Sciences, 108, 20054-20059. https://doi.org/10.1073/pnas.1116302108.
Holzinger, D., Gieldon, L., Mysore, V., Nippe, N., Taxman, D. J., Duncan, J. A., … Löffler, B. (2012). Staphylococcus aureus Panton-valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. Journal of Leukocyte Biology, 92, 1069-1081. https://doi.org/10.1189/jlb.0112014.
Horsburgh, M. J., Clements, M. O., Crossley, H., Ingham, E., & Foster, S. J. (2001). PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infection and Immunity, 69, 3744-3754. https://doi.org/10.1128/IAI.69.6.3744-3754.2001.
Imre, G., Heering, J., Takeda, A.-N., Husmann, M., Thiede, B., Zu Heringdorf, D. M., … Rajalingam, K. (2012). Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis: Caspase-2 is responsible for PFT-mediated apoptosis. The EMBO Journal, 31, 2615-2628. https://doi.org/10.1038/emboj.2012.93.
Inoshima, I., Inoshima, N., Wilke, G. A., Powers, M. E., Frank, K. M., Wang, Y., & Wardenburg, J. B. (2011). A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nature Medicine, 17, 1310-1314. https://doi.org/10.1038/nm.2451.
Inoshima, N., Wang, Y., & Bubeck Wardenburg, J. (2012). Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. The Journal of Investigative Dermatology, 132, 1513-1516. https://doi.org/10.1038/jid.2011.462.
Ionin, B., Hammamieh, R., Shupp, J. W., Das, R., Pontzer, C. H., & Jett, M. (2008). Staphylococcal enterotoxin B causes differential expression of Rnd3 and RhoA in renal proximal tubule epithelial cells while inducing Actin stress fiber assembly and apoptosis. Microbial Pathogenesis, 45, 303-309. https://doi.org/10.1016/j.micpath.2008.07.002.
Iwaki, D., Mitsuzawa, H., Murakami, S., Sano, H., Konishi, M., Akino, T., & Kuroki, Y. (2002). The extracellular toll-like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. The Journal of Biological Chemistry, 277, 24315-24320. https://doi.org/10.1074/jbc.M107057200.
Jenul, C., & Horswill, A. R. (2018). Regulation of Staphylococcus aureus virulence. Microbiology Spectrum, 7(2). https://doi.org/10.1128/microbiolspec.GPP3-0031-2018.
Jin, T., Zhu, Y. L., Li, J., Shi, J., He, X. Q., Ding, J., & Xu, Y. Q. (2013). Staphylococcal protein a, Panton-valentine leukocidin and coagulase aggravate the bone loss and bone destruction in osteomyelitis. Cellular Physiology and Biochemistry, 32, 322-333. https://doi.org/10.1159/000354440.
Kang, R., Zeng, L., Zhu, S., Xie, Y., Liu, J., Wen, Q., … Tang, D. (2018). Lipid peroxidation drives Gasdermin D-mediated Pyroptosis in lethal Polymicrobial Sepsis. Cell Host Microbe 24, e4, 97-108. https://doi.org/10.1016/j.chom.2018.05.009.
Kayagaki, N., Stowe, I. B., Lee, B. L., O'Rourke, K., Anderson, K., Warming, S., … Dixit, V. M. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526, 666-671. https://doi.org/10.1038/nature15541.
Kebaier, C., Chamberland, R. R., Allen, I. C., Gao, X., Broglie, P. M., Hall, J. D., … Duncan, J. A. (2012). Staphylococcus aureus α-Hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 Inflammasome. The Journal of Infectious Diseases, 205, 807-817. https://doi.org/10.1093/infdis/jir846.
Kintarak, S., Whawell, S. A., Speight, P. M., Packer, S., & Nair, S. P. (2004). Internalization of Staphylococcus aureus by human keratinocytes. Infection and Immunity, 72, 5668-5675. https://doi.org/10.1128/IAI.72.10.5668-5675.2004.
Kitur, K., Parker, D., Nieto, P., Ahn, D. S., Cohen, T. S., Chung, S., … Prince, A. (2015). Toxin-induced Necroptosis is a major mechanism of Staphylococcus aureus Lung damage. PLoS Pathogens, 11, e1004820. https://doi.org/10.1371/journal.ppat.1004820.
Kitur, K., Wachtel, S., Brown, A., Wickersham, M., Paulino, F., Peñaloza, H. F., … Prince, A. (2016). Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Reports, 16, 2219-2230. https://doi.org/10.1016/j.celrep.2016.07.039.
Korea, C. G., Balsamo, G., Pezzicoli, A., Merakou, C., Tavarini, S., Bagnoli, F., … Unnikrishnan, M. (2014). Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infection and Immunity, 82, 4144-4153. https://doi.org/10.1128/IAI.01576-14.
Kornberg, M. D., Bhargava, P., Kim, P. M., Putluri, V., Snowman, A. M., Putluri, N., … Snyder, S. H. (2018). Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science, 360, 449-453. https://doi.org/10.1126/science.aan4665.
Koymans, K. J., Feitsma, L. J., Brondijk, T. H. C., Aerts, P. C., Lukkien, E., Lössl, P., … Huizinga, E. G. (2015). Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proceedings of the National Academy of Sciences USA, 112, 11018-11023. https://doi.org/10.1073/pnas.1502026112.
Koziel, J., Kmiecik, K., Chmiest, D., Maresz, K., Mizgalska, D., Maciag-Gudowska, A., … Potempa, J. (2013). The role of mcl-1 in S. aureus -induced Cytoprotection of infected macrophages. Mediators of Inflammation, 2013, 1-12. https://doi.org/10.1155/2013/427021.
Koziel, J., Maciag-Gudowska, A., Mikolajczyk, T., Bzowska, M., Sturdevant, D. E., Whitney, A. R., … Potempa, J. (2009). Phagocytosis of Staphylococcus aureus by macrophages exerts Cytoprotective effects manifested by the Upregulation of Antiapoptotic factors. PLoS One, 4, e5210. https://doi.org/10.1371/journal.pone.0005210.
Krokowski, S., Lobato-Márquez, D., Chastanet, A., Pereira, P. M., Angelis, D., Galea, D., … Mostowy, S. (2018). Septins recognize and entrap dividing bacterial cells for delivery to lysosomes. Cell Host and Microbe, 24, 866-874.e4. https://doi.org/10.1016/j.chom.2018.11.005.
Krokowski, S., & Mostowy, S. (2016). Interactions between Shigella flexneri and the autophagy machinery. Frontiers in Cellular and Infection Microbiology, 6, 17. https://doi.org/10.3389/fcimb.2016.00017.
Kubica, M., Guzik, K., Koziel, J., Zarebski, M., Richter, W., Gajkowska, B., … Potempa, J. (2008). A potential new pathway for Staphylococcus aureus dissemination: The silent survival of S. aureus Phagocytosed by human monocyte-derived macrophages. PLoS One, 3, e1409. https://doi.org/10.1371/journal.pone.0001409.
Kwiecinski, J. M., & Horswill, A. R. (2020). Staphylococcus aureus bloodstream infections: Pathogenesis and regulatory mechanisms. Current Opinion in Microbiology, Host-Microbe Interactions: Bacterial, 53, 51-60. https://doi.org/10.1016/j.mib.2020.02.005.
Laabei, M., Uhlemann, A.-C., Lowy, F. D., Austin, E. D., Yokoyama, M., Ouadi, K., … Massey, R. C. (2015). Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLoS Biology, 13, e1002229. https://doi.org/10.1371/journal.pbio.1002229.
Lacoma, A., Cano, V., Moranta, D., Regueiro, V., Domínguez-Villanueva, D., Laabei, M., … Bengoechea, J. A. (2017). Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence, 8, 1761-1775. https://doi.org/10.1080/21505594.2017.1361089.
Lannergård, J., Cao, S., Norström, T., Delgado, A., Gustafson, J. E., & Hughes, D. (2011). Genetic complexity of fusidic acid-resistant small colony variants (SCV) in Staphylococcus aureus. PLoS One, 6, e28366. https://doi.org/10.1371/journal.pone.0028366.
Lawrence, S. M., Corriden, R., & Nizet, V. (2020). How neutrophils meet their end. Trends in Immunology, 41, 531-544. https://doi.org/10.1016/j.it.2020.03.008.
Liang, X., & Ji, Y. (2007). Involvement of α5β1-integrin and TNF-α in Staphylococcus aureus α-toxin-induced death of epithelial cells. Cellular Microbiology, 9, 1809-1821. https://doi.org/10.1111/j.1462-5822.2007.00917.x.
Liu, X., & Lieberman, J. (2017). A mechanistic understanding of Pyroptosis: The fiery death triggered by invasive infection. In Advances in immunology, 135, 81-117. https://doi.org/10.1016/bs.ai.2017.02.002.
Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V. G., Wu, H., & Lieberman, J. (2016). Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 535, 153-158. https://doi.org/10.1038/nature18629.
Liu, Y., Chen, W., Ali, T., Alkasir, R., Yin, J., Liu, G., & Han, B. (2014). Staphylococcal enterotoxin H induced apoptosis of bovine mammary epithelial cells in vitro. Toxins (Basel), 6, 3552-3567. https://doi.org/10.3390/toxins6123552.
Lopez, M. S., Tan, I. S., Yan, D., Kang, J., McCreary, M., Modrusan, Z., … Brown, E. J. (2017). Host-derived fatty acids activate type VII secretion in Staphylococcus aureus. Proceedings of the National Academy of Sciences USA, 114, 11223-11228. https://doi.org/10.1073/pnas.1700627114.
Lotz, S., Aga, E., Wilde, I., van Zandbergen, G., Hartung, T., Solbach, W., & Laskay, T. (2004). Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J. Leukoc. Biol. 75, 467-477. https://doi.org/10.1189/jlb.0803360.
Lowy, F. D. (2000). Is Staphylococcus aureus an intracellular pathogen? Trends in Microbiology, 8, 341-343. https://doi.org/10.1016/s0966-842x(00)01803-5.
Ma, J., Gulbins, E., Edwards, M. J., Caldwell, C. C., Fraunholz, M., & Becker, K. A. (2017). Staphylococcus aureus α-toxin induces inflammatory cytokines via Lysosomal acid Sphingomyelinase and Ceramides. Cellular Physiology and Biochemistry, 43, 2170-2184. https://doi.org/10.1159/000484296.
Magtanong, L., Ko, P. J., & Dixon, S. J. (2016). Emerging roles for lipids in non-apoptotic cell death. Cell Death and Differentiation, 23, 1099-1109. https://doi.org/10.1038/cdd.2016.25.
Mariathasan, S., Weiss, D. S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., … Dixit, V. M. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 440, 228-232. https://doi.org/10.1038/nature04515.
Martinon, F., Burns, K., & Tschopp, J. (2002). The Inflammasome. Molecular Cell, 10, 417-426. https://doi.org/10.1016/S1097-2765(02)00599-3.
Maurer, K., Reyes-Robles, T., Alonzo, F., Durbin, J., Torres, V. J., & Cadwell, K. (2015). Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe, 17, 429-440. https://doi.org/10.1016/j.chom.2015.03.001.
Maurer, K., Torres, V. J., & Cadwell, K. (2015). Autophagy is a key tolerance mechanism during Staphylococcus aureus infection. Autophagy, 11, 1184-1186. https://doi.org/10.1080/15548627.2015.1058685.
McDonald, B., Urrutia, R., Yipp, B. G., Jenne, C. N., & Kubes, P. (2012). Intravascular neutrophil extracellular traps capture Bacteria from the bloodstream during Sepsis. Cell Host & Microbe, 12, 324-333. https://doi.org/10.1016/j.chom.2012.06.011.
McKallip, R. J., Fisher, M., Gunthert, U., Szakal, A. K., Nagarkatti, P. S., & Nagarkatti, M. (2005). Role of CD44 and its v7 isoform in staphylococcal enterotoxin B-induced toxic shock: CD44 deficiency on hepatic mononuclear cells leads to reduced activation-induced apoptosis that results in increased liver damage. Infection and Immunity, 73, 50-61. https://doi.org/10.1128/IAI.73.1.50-61.2005.
Melehani, J. H., & Duncan, J. A. (2016). Inflammasome activation can mediate tissue-specific pathogenesis or protection in Staphylococcus aureus infection. In S. Backert (Ed.), Inflammasome signaling and bacterial infections, current topics in microbiology and immunology (pp. 257-282). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-41171-2_13.
Miao, E. A., Leaf, I. A., Treuting, P. M., Mao, D. P., Dors, M., Sarkar, A., … Aderem, A. (2010). Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunology, 11, 1136-1142. https://doi.org/10.1038/ni.1960.
Miller, L. S., Pietras, E. M., Uricchio, L. H., Hirano, K., Rao, S., Lin, H., … Modlin, R. L. (2007). Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. Journal of Immunology, 179, 6933-6942. https://doi.org/10.4049/jimmunol.179.10.6933.
Moldovan, A., & Fraunholz, M. J. (2019). In or out: Phagosomal escape of Staphylococcus aureus. Cellular Microbiology, 21, e12997. https://doi.org/10.1111/cmi.12997.
Mostowy, S. (2013). Autophagy and bacterial clearance: A not so clear picture. Cellular Microbiology, 15, 395-402. https://doi.org/10.1111/cmi.12063.
Mostowy, S., & Shenoy, A. R. (2015). The cytoskeleton in cell-autonomous immunity: Structural determinants of host defence. Nature Reviews. Immunology, 15, 559-573. https://doi.org/10.1038/nri3877.
Mulcahy, M. E., O'Brien, E. C., O'Keeffe, K. M., Vozza, E. G., Leddy, N., & McLoughlin, R. M. (2020). Manipulation of autophagy and apoptosis facilitates intracellular survival of Staphylococcus aureus in human neutrophils. Frontiers in Immunology, 11, 565545. https://doi.org/10.3389/fimmu.2020.565545.
Müller-Anstett, M. A., Müller, P., Albrecht, T., Nega, M., Wagener, J., Gao, Q., … Götz, F. (2010). Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLOS ONE 5, e13153. https://doi.org/10.1371/journal.pone.0013153.
Müller, S., Wolf, A. J., Iliev, I. D., Berg, B. L., Underhill, D. M., & Liu, G. Y. (2015). Poorly cross-linked peptidoglycan in MRSA due to mecA Induction Activates the Inflammasome and Exacerbates Immunopathology. Cell Host & Microbe 18, 604-612. https://doi.org/10.1016/j.chom.2015.10.011.
Muñoz-Planillo, R., Franchi, L., Miller, L. S., & Núñez, G. (2009). A critical role for Hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 Inflammasome. Journal of Immunology, 183, 3942-3948. https://doi.org/10.4049/jimmunol.0900729.
Murphy, J. M., Czabotar, P. E., Hildebrand, J. M., Lucet, I. S., Zhang, J.-G., Alvarez-Diaz, S., … Alexander, W. S. (2013). The Pseudokinase MLKL mediates Necroptosis via a molecular switch mechanism. Immunity, 39, 443-453. https://doi.org/10.1016/j.immuni.2013.06.018.
O'Keeffe, K. M., Wilk, M. M., Leech, J. M., Murphy, A. G., Laabei, M., Monk, I. R., … McLoughlin, R. M. (2015). Manipulation of autophagy in phagocytes facilitates Staphylococcus aureus bloodstream infection. Infection and Immunity, 83, 3445-3457. https://doi.org/10.1128/IAI.00358-15.
Ohr, R. J., Anderson, M., Shi, M., Schneewind, O., & Missiakas, D. (2017). EssD, a nuclease effector of the Staphylococcus aureus ESS pathway. Journal of Bacteriology, 199, e00528-16. https://doi.org/10.1128/JB.00528-16.
Oliveira-Nascimento, L., Massari, P., & Wetzler, L. M. (2012). The role of TLR2 in infection and immunity. Frontiers in Immunology, 3, 79. https://doi.org/10.3389/fimmu.2012.00079.
Omotade, T. O., & Roy, C. R. (2019). Manipulation of host cell organelles by intracellular pathogens & (Eds.), Microbiology spectrum, 7(2). https://doi.org/10.1128/microbiolspec.BAI-0022-2019.
Parsons, J. B., Broussard, T. C., Bose, J. L., Rosch, J. W., Jackson, P., Subramanian, C., & Rock, C. O. (2014). Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus. Proceedings of the National Academy of Sciences, 111, 10532-10537. https://doi.org/10.1073/pnas.1408797111.
Patot, S., Imbert, P., Baude, J., Martins Simões, P., Campergue, J.-B., Louche, A., … Lina, G. (2017). The TIR homologue lies near resistance genes in Staphylococcus aureus, coupling modulation of virulence and antimicrobial susceptibility. PLoS Pathogens, 13, e1006092. https://doi.org/10.1371/journal.ppat.1006092.
Place, D. E., Lee, S. J., & Kanneganti, T.-D. (2020). PANoptosis in microbial infection. Current Opinion in Microbiology, 59, 42-49. https://doi.org/10.1016/j.mib.2020.07.012.
Porichis, F., Morou, A., Baritaki, S., Spandidos, D. A., & Krambovitis, E. (2008). Activation-induced cell death signalling in CD4+ T cells by staphylococcal enterotoxin a. Toxicology Letters, 176, 77-84. https://doi.org/10.1016/j.toxlet.2007.10.009.
Potter, A. D., Butrico, C. E., Ford, C. A., Curry, J. M., Trenary, I. A., Tummarakota, S. S., … Cassat, J. E. (2020). Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection. Proceedings of the National Academy of Sciences USA, 117, 12394-12401. https://doi.org/10.1073/pnas.1922211117.
Proctor, R. A., von Eiff, C., Kahl, B. C., Becker, K., McNamara, P., Herrmann, M., & Peters, G. (2006). Small colony variants: A pathogenic form of bacteria that facilitates persistent and recurrent infections. Nature Reviews. Microbiology, 4, 295-305. https://doi.org/10.1038/nrmicro1384.
Randow, F., MacMicking, J. D., & James, L. C. (2013). Cellular self-defense: How cell-autonomous immunity protects against pathogens. Science, 340, 701-706. https://doi.org/10.1126/science.1233028.
Renno, T., Hahne, M., Tschopp, J., & MacDonald, H. R. (1996). Peripheral T cells undergoing superantigen-induced apoptosis in vivo express B220 and upregulate Fas and Fas ligand. The Journal of Experimental Medicine, 183, 431-437. https://doi.org/10.1084/jem.183.2.431.
Rühl, S., Shkarina, K., Demarco, B., Heilig, R., Santos, J. C., & Broz, P. (2018). ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science, 362, 956-960. https://doi.org/10.1126/science.aar7607.
Sakr, A., Brégeon, F., Mège, J.-L., Rolain, J.-M., & Blin, O. (2018). Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Frontiers in Microbiology, 9, 2419. https://doi.org/10.3389/fmicb.2018.02419.
Sanchez-Garrido, J., Slater, S. L., Clements, A., Shenoy, A. R., & Frankel, G. (2020). Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cellular Microbiology, 22, e13184. https://doi.org/10.1111/cmi.13184.
Sause, W. E., Copin, R., O'Malley, A., Chan, R., Morrow, B. J., Buckley, P. T., … Torres, V. J. (2017). Staphylococcus aureus strain Newman D2C contains mutations in major regulatory pathways that cripple its pathogenesis. Journal of Bacteriology, 199, e00476-17. https://doi.org/10.1128/JB.00476-17.
Schnaith, A., Kashkar, H., Leggio, S. A., Addicks, K., Krönke, M., & Krut, O. (2007). Staphylococcus aureus subvert autophagy for induction of Caspase-independent host cell death. The Journal of Biological Chemistry, 282, 2695-2706. https://doi.org/10.1074/jbc.M609784200.
Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., & Kirschning, C. J. (1999). Peptidoglycan- and Lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. The Journal of Biological Chemistry, 274, 17406-17409. https://doi.org/10.1074/jbc.274.25.17406.
Shan, W., Bu, S., Zhang, C., Zhang, S., Ding, B., Chang, W., … Ma, X. (2015). LukS-PV, a component of Panton-valentine leukocidin, exerts potent activity against acute myeloid leukemia in vitro and in vivo. The International Journal of Biochemistry & Cell Biology, 61, 20-28. https://doi.org/10.1016/j.biocel.2015.01.007.
Shi, C.-S., Shenderov, K., Huang, N.-N., Kabat, J., Abu-Asab, M., Fitzgerald, K. A., … Kehrl, J. H. (2012). Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nature Immunology, 13, 255-263. https://doi.org/10.1038/ni.2215.
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., … Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526, 660-665. https://doi.org/10.1038/nature15514.
Shimada, T., Park, B. G., Wolf, A. J., Brikos, C., Goodridge, H. S., Becker, C. A., … Underhill, D. M. (2010). Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, Inflammasome activation, and IL-1β secretion. Cell Host & Microbe, 7, 38-49. https://doi.org/10.1016/j.chom.2009.12.008.
Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nature Reviews. Molecular Cell Biology, 20, 175-193. https://doi.org/10.1038/s41580-018-0089-8.
Smagur, J., Guzik, K., Magiera, L., Bzowska, M., Gruca, M., Thøgersen, I. B., … Potempa, J. (2009). A new pathway of staphylococcal pathogenesis: Apoptosis-like death induced by Staphopain B in human neutrophils and monocytes. Journal of Innate Immunity, 1, 98-108. https://doi.org/10.1159/000181014.
Sollberger, G., Choidas, A., Burn, G. L., Habenberger, P., Di Lucrezia, R., Kordes, S., … Zychlinsky, A. (2018). Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Science Immunology, 3, eaar6689. https://doi.org/10.1126/sciimmunol.aar6689.
Soong, G., Chun, J., Parker, D., & Prince, A. (2012). Staphylococcus aureus activation of Caspase 1/Calpain signaling mediates invasion through human keratinocytes. The Journal of Infectious Diseases, 205, 1571-1579. https://doi.org/10.1093/infdis/jis244.
Soong, G., Paulino, F., Wachtel, S., Parker, D., Wickersham, M., Zhang, D., … Prince, A. (2015). Methicillin-resistant Staphylococcus aureus adaptation to human keratinocytes. MBio, 6, e00289-15. https://doi.org/10.1128/mBio.00289-15.
Spaan, A. N., Henry, T., van Rooijen, W. J. M., Perret, M., Badiou, C., Aerts, P. C., … van Strijp, J. A. G. (2013). The staphylococcal toxin Panton-valentine Leukocidin targets human C5a receptors. Cell Host & Microbe, 13, 584-594. https://doi.org/10.1016/j.chom.2013.04.006.
Spaan, A. N., Surewaard, B. G. J., Nijland, R., & van Strijp, J. A. G. (2013). Neutrophils versus Staphylococcus aureus: A biological tug of war. Annual Review of Microbiology, 67, 629-650. https://doi.org/10.1146/annurev-micro-092412-155746.
Stappers, M. H. T., Thys, Y., Oosting, M., Plantinga, T. S., Ioana, M., Reimnitz, P., … Gyssens, I. C. (2014). TLR1, TLR2, and TLR6 gene polymorphisms are associated with increased susceptibility to complicated skin and skin structure infections. Journal of Infectious Diseases, 210, 311-318. https://doi.org/10.1093/infdis/jiu080.
Stelzner, K., Winkler, A. C., Liang, C., Boyny, A., Ade, C. P., Dandekar, T., … Rudel, T. (2020). Intracellular staphylococcus aureus perturbs the host cell Ca2+ Homeostasis to promote cell death. mBio, 11(6), e02250-20. https://dx.doi.org/10.1128/mBio.02250-20.
Stoll, H., Dengjel, J., Nerz, C., & Götz, F. (2005). Staphylococcus aureus deficient in Lipidation of Prelipoproteins is attenuated in growth and immune activation. IAI, 73, 2411-2423. https://doi.org/10.1128/IAI.73.4.2411-2423.2005.
Strobel, M., Pförtner, H., Tuchscherr, L., Völker, U., Schmidt, F., Kramko, N., … Niemann, S. (2016). Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clinical Microbiology and Infection, 22, 799-809. https://doi.org/10.1016/j.cmi.2016.06.020.
Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., … Wang, X. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213-227. https://doi.org/10.1016/j.cell.2011.11.031.
Surewaard, B. G. J., Deniset, J. F., Zemp, F. J., Amrein, M., Otto, M., Conly, J., … Kubes, P. (2016). Identification and treatment of the Staphylococcus aureus reservoir in vivo. The Journal of Experimental Medicine, 213, 1141-1151. https://doi.org/10.1084/jem.20160334.
Takahashi, M., Takahashi, M., Shinohara, F., Takada, H., & Rikiishi, H. (2001). Effects of Superantigen and lipopolysaccharide on induction of CD80 through apoptosis of human monocytes. Infection and Immunity, 69, 3652-3657. https://doi.org/10.1128/IAI.69.6.3652-3657.2001.
Takahashi, N., Duprez, L., Grootjans, S., Cauwels, A., Nerinckx, W., DuHadaway, J. B., … Vandenabeele, P. (2012). Necrostatin-1 analogues: Critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death & Disease, 3, e437-e437. https://doi.org/10.1038/cddis.2012.176.
Takeuchi, O., Hoshino, K., & Akira, S. (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. Journal of Immunology, 165, 5392-5396. https://doi.org/10.4049/jimmunol.165.10.5392.
Takeuchi, O., Kawai, T., Mühlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., … Akira, S. (2001). Discrimination of bacterial lipoproteins by toll-like receptor 6. International Immunology, 13, 933-940. https://doi.org/10.1093/intimm/13.7.933.
Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P., & Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell Research, 29, 347-364. https://doi.org/10.1038/s41422-019-0164-5.
Thammavongsa, V., Missiakas, D. M., & Schneewind, O. (2013). Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science, 342, 863-866. https://doi.org/10.1126/science.1242255.
Thurlow, L. R., Stephens, A. C., Hurley, K. E., & Richardson, A. R. (2020). Lack of nutritional immunity in diabetic skin infections promotes Staphylococcus aureus virulence. Science Advances, 6, eabc5569. https://doi.org/10.1126/sciadv.abc5569.
Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28, 603-661. https://doi.org/10.1128/CMR.00134-14.
Torres, V. J., Attia, A. S., Mason, W. J., Hood, M. I., Corbin, B. D., Beasley, F. C., … Skaar, E. P. (2010). Staphylococcus aureus Fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infection and Immunity, 78, 1618-1628. https://doi.org/10.1128/IAI.01423-09.
Towhid, S. T., Nega, M., Schmidt, E.-M., Schmid, E., Albrecht, T., Münzer, P., … Lang, F. (2012). Stimulation of platelet apoptosis by peptidoglycan from Staphylococcus aureus 113. Apoptosis 17, 998-1008. https://doi.org/10.1007/s10495-012-0718-1.
Tranchemontagne, Z. R., Camire, R. B., O'Donnell, V. J., Baugh, J., & Burkholder, K. M. (2016). Staphylococcus aureus strain USA300 perturbs acquisition of lysosomal enzymes and requires phagosomal acidification for survival inside macrophages. Infection and Immunity, 84, 241-253. https://doi.org/10.1128/IAI.00704-15.
Tromp, A. T., Van Gent, M., Abrial, P., Martin, A., Jansen, J. P., De Haas, C. J. C., … Spaan, A. N. (2018). Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-valentine leukocidin. Nature Microbiology, 3, 708-717. https://doi.org/10.1038/s41564-018-0159-x.
Tsuchiya, K., Nakajima, S., Hosojima, S., Thi Nguyen, D., Hattori, T., Manh Le, T., … Suda, T. (2019). Caspase-1 initiates apoptosis in the absence of gasdermin D. Nature Communications, 10, 2091. https://doi.org/10.1038/s41467-019-09753-2.
Tuchscherr, L., Löffler, B., & Proctor, R. A. (2020). Persistence of Staphylococcus aureus: Multiple metabolic pathways impact the expression of virulence factors in small-Colony variants (SCVs). Frontiers in Microbiology, 11, 1028. https://doi.org/10.3389/fmicb.2020.01028.
Tuchscherr, L., Medina, E., Hussain, M., Völker, W., Heitmann, V., Niemann, S., … Löffler, B. (2011). Staphylococcus aureus phenotype switching: An effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Molecular Medicine, 3, 129-141. https://doi.org/10.1002/emmm.201000115.
Ulhuq, F. R., Gomes, M. C., Duggan, G. M., Guo, M., Mendonca, C., Buchanan, G., … Palmer, T. (2020). A membrane-depolarizing toxin substrate of the Staphylococcus aureus type VII secretion system mediates intraspecies competition. Proceedings of the National Academy of Sciences USA, 117, 20836-20847. https://doi.org/10.1073/pnas.2006110117.
Unnikrishnan, M., Constantinidou, C., Palmer, T., & Pallen, M. J. (2017). The enigmatic Esx proteins: Looking beyond mycobacteria. Trends in Microbiology, 25, 192-204. https://doi.org/10.1016/j.tim.2016.11.004.
van Dalen, R., Peschel, A., & van Sorge, N. M. (2020). Wall Teichoic acid in Staphylococcus aureus host interaction. Trends in Microbiology, 28, 985-998. https://doi.org/10.1016/j.tim.2020.05.017.
Vázquez-Sánchez, E. A., Rodríguez-Romero, M., Sánchez-Torres, L. E., Rodríguez-Martínez, S., Cancino-Diaz, J. C., Rodríguez-Cortes, O., … Cancino-Diaz, M. E. (2014). Peptidoglycan from Staphylococcus aureus has an anti-apoptotic effect in HaCaT keratinocytes mediated by the production of the cellular inhibitor of apoptosis protein-2: PGN has an anti-apoptotic effect. Microbiol Immunol 58, 87-95. https://doi.org/10.1111/1348-0421.12126.
Vince, J. E., & Silke, J. (2016). The intersection of cell death and inflammasome activation. Cellular and Molecular Life Sciences, 73, 2349-2367. https://doi.org/10.1007/s00018-016-2205-2.
Vulin, C., Leimer, N., Huemer, M., Ackermann, M., & Zinkernagel, A. S. (2018). Prolonged bacterial lag time results in small colony variants that represent a sub-population of persisters. Nature Communications, 9, 4074. https://doi.org/10.1038/s41467-018-06527-0.
Wang, J., Qi, L., Mei, L., Wu, Z., & Wang, H. (2016). C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid. International Journal of Biological Macromolecules 88, 81-87. https://doi.org/10.1016/j.ijbiomac.2016.03.054.
Wang, X., Eagen, W. J., & Lee, J. C. (2020). Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proceedings of the National Academy of Sciences USA, 117, 3174-3184. https://doi.org/10.1073/pnas.1915829117.
Warne, B., Harkins, C. P., Harris, S. R., Vatsiou, A., Stanley-Wall, N., Parkhill, J., … Holden, M. T. G. (2016). The Ess/type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genomics, 17, 222. https://doi.org/10.1186/s12864-016-2426-7.
Wesson, C. A., Deringer, J., Liou, L. E., Bayles, K. W., Bohach, G. A., & Trumble, W. R. (2000). Apoptosis induced by Staphylococcus aureus in epithelial cells utilizes a mechanism involving Caspases 8 and 3. Infection and Immunity, 68, 2998-3001.
Wickersham, M., Wachtel, S., Wong Fok Lung, T., Soong, G., Jacquet, R., Richardson, A., … Prince, A. (2017). Metabolic stress drives keratinocyte defenses against Staphylococcus aureus infection. Cell Reports, 18, 2742-2751. https://doi.org/10.1016/j.celrep.2017.02.055.
Wilke, G. A., & Wardenburg, J. B. (2010). Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus -hemolysin-mediated cellular injury. Proceedings of the National Academy of Sciences, 107, 13473-13478. https://doi.org/10.1073/pnas.1001815107.
Wilson, N. S., Dixit, V., & Ashkenazi, A. (2009). Death receptor signal transducers: Nodes of coordination in immune signaling networks. Nature Immunology, 10, 348-355. https://doi.org/10.1038/ni.1714.
Winstel, V., Schneewind, O., & Missiakas, D. (2019). Staphylococcus aureus exploits the host apoptotic pathway to persist during infection. MBio, 10, e02270-19. https://doi.org/10.1128/mBio.02270-19.
Wong Fok Lung, T., Monk, I. R., Acker, K. P., Mu, A., Wang, N., Riquelme, S. A., … Prince, A. (2020). Staphylococcus aureus small colony variants impair host immunity by activating host cell glycolysis and inducing necroptosis. Nature Microbiology, 5, 141-153. https://doi.org/10.1038/s41564-019-0597-0.
Wong Fok Lung, T., & Prince, A. (2020). Consequences of metabolic interactions during Staphylococcus aureus infection. Toxins, 12, 581. https://doi.org/10.3390/toxins12090581.
Xia, B., Fang, S., Chen, X., Hu, H., Chen, P., Wang, H., & Gao, Z. (2016). MLKL forms cation channels. Cell Research, 26, 517-528. https://doi.org/10.1038/cr.2016.26.
Yang, Z., Wang, Y., Zhang, Y., He, X., Zhong, C.-Q., Ni, H., … Han, J. (2018). RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nature Cell Biology, 20, 186-197. https://doi.org/10.1038/s41556-017-0022-y.
Yimin, Kohanawa, M., Zhao, S., Ozaki, M., Haga, S., Nan, G., Kuge, Y., & Tamaki, N. (2013). Contribution of toll-like receptor 2 to the innate response against Staphylococcus aureus infection in mice. PLoS One, 8, e74287. https://doi.org/10.1371/journal.pone.0074287.
Yokoyama, R., Itoh, S., Kamoshida, G., Takii, T., Fujii, S., Tsuji, T., & Onozaki, K. (2012). Staphylococcal Superantigen-like protein 3 binds to the toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, Cell Wall component, or Lipopeptides in murine macrophages. Infection and Immunity, 80, 2816-2825. https://doi.org/10.1128/IAI.00399-12.
Young, B. C., Wu, C.-H., Gordon, N. C., Cole, K., Price, J. R., Liu, E., … Wilson, D. J. (2017). Severe infections emerge from commensal bacteria by adaptive evolution. eLife, 6, e30637. https://doi.org/10.7554/eLife.30637.
Yu, F.-L., Liu, T.-T., Zhu, X., Yang, W.-X., Zhang, T., Lin, N., … Guan, J.-C. (2013). Staphylococcal enterotoxin B and α-toxin induce the apoptosis of ECV304 cells via similar mechanisms. Molecular Medicine Reports, 8, 591-596. https://doi.org/10.3892/mmr.2013.1550.
Zhang, X., Hu, X., & Rao, X. (2017). Apoptosis induced by Staphylococcus aureus toxins. Microbiological Research, 205, 19-24. https://doi.org/10.1016/j.micres.2017.08.006.
Zhao, Y., Tang, J., Yang, D., Tang, C., & Chen, J. (2020). Staphylococcal enterotoxin M induced inflammation and impairment of bovine mammary epithelial cells. Journal of Dairy Science, 0, 8350-8359. https://doi.org/10.3168/jds.2019-17444.
Zhou, Y., Niu, C., Ma, B., Xue, X., Li, Z., Chen, Z., … Hou, Z. (2018). Inhibiting PSMα-induced neutrophil necroptosis protects mice with MRSA pneumonia by blocking the agr system. Cell Death & Disease, 9, 362. https://doi.org/10.1038/s41419-018-0398-z.
فهرسة مساهمة: Keywords: PCD; Staphylococcus aureus; apoptosis; autophagy; ferroptosis; intracellular pathogen; metabolism; necroptosis; programmed cell death; pyroptosis
المشرفين على المادة: 0 (Pathogen-Associated Molecular Pattern Molecules)
0 (Virulence Factors)
تواريخ الأحداث: Date Created: 20210207 Date Completed: 20211203 Latest Revision: 20211214
رمز التحديث: 20221213
DOI: 10.1111/cmi.13317
PMID: 33550697
قاعدة البيانات: MEDLINE