دورية أكاديمية

Mutations in the IFNγ-JAK-STAT Pathway Causing Resistance to Immune Checkpoint Inhibitors in Melanoma Increase Sensitivity to Oncolytic Virus Treatment.

التفاصيل البيبلوغرافية
العنوان: Mutations in the IFNγ-JAK-STAT Pathway Causing Resistance to Immune Checkpoint Inhibitors in Melanoma Increase Sensitivity to Oncolytic Virus Treatment.
المؤلفون: Nguyen TT; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.; Department of Biochemistry, McGill University, Montréal, Québec, Canada., Ramsay L; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada., Ahanfeshar-Adams M; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada., Lajoie M; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada., Schadendorf D; Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.; German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany., Alain T; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada., Watson IR; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. ian.watson2@mcgill.ca.; Department of Biochemistry, McGill University, Montréal, Québec, Canada.; Research Institute of the McGill University Health Centre, Montréal, Canada.
المصدر: Clinical cancer research : an official journal of the American Association for Cancer Research [Clin Cancer Res] 2021 Jun 15; Vol. 27 (12), pp. 3432-3442. Date of Electronic Publication: 2021 Feb 16.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: The Association Country of Publication: United States NLM ID: 9502500 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1557-3265 (Electronic) Linking ISSN: 10780432 NLM ISO Abbreviation: Clin Cancer Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Denville, NJ : The Association, c1995-
مواضيع طبية MeSH: Melanoma, Experimental*/genetics , Melanoma, Experimental*/therapy , Oncolytic Viruses*/genetics, Animals ; Cell Line, Tumor ; Humans ; Immune Checkpoint Inhibitors/pharmacology ; Immune Checkpoint Inhibitors/therapeutic use ; Janus Kinases/genetics ; Janus Kinases/metabolism ; Mice ; Mutation ; STAT Transcription Factors/genetics ; STAT Transcription Factors/metabolism ; Signal Transduction
مستخلص: Purpose: Next-generation sequencing studies and CRISPR-Cas9 screens have established mutations in the IFNγ-JAK-STAT pathway as an immune checkpoint inhibitor (ICI) resistance mechanism in a subset of patients with melanoma. We hypothesized ICI resistance mutations in the IFNγ pathway would simultaneously render melanomas susceptible to oncolytic virus (OV) therapy.
Experimental Design: Cytotoxicity experiments were performed with a number of OVs on a matched melanoma cell line pair generated from a baseline biopsy and a progressing lesion with complete JAK2 loss from a patient that relapsed on anti-PD-1 therapy, in melanoma lines following JAK1/2 RNA interference (RNAi) and pharmacologic inhibition and in Jak2 knockout (KO) B16-F10 mouse melanomas. Furthermore, we estimated the frequency of genetic alterations in the IFNγ-JAK-STAT pathway in human melanomas.
Results: The melanoma line from an anti-PD-1 progressing lesion was 7- and 22-fold more sensitive to the modified OVs, herpes simplex virus 1 (HSV1-dICP0) and vesicular stomatitis virus (VSV-Δ51), respectively, compared with the line from the baseline biopsy. RNAi, JAK1/2 inhibitor studies, and in vivo studies of Jak2 KOs B16-F10 melanomas revealed a significant increase in VSV-Δ51 sensitivity with JAK/STAT pathway inhibition. Our analysis of The Cancer Genome Atlas data estimated that approximately 11% of ICI-naïve cutaneous melanomas have alterations in IFNγ pathway genes that may confer OV susceptibility.
Conclusions: We provide mechanistic support for the use of OVs as a precision medicine strategy for both salvage therapy in ICI-resistant and first-line treatment in melanomas with IFNγ-JAK-STAT pathway mutations. Our study also supports JAK inhibitor-OV combination therapy for treatment-naïve melanomas without IFN signaling defects. See related commentary by Kaufman, p. 3278 .
(©2021 American Association for Cancer Research.)
التعليقات: Comment in: Clin Cancer Res. 2021 Jun 15;27(12):3278-3279. (PMID: 33849964)
References: Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.
Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14:463–82.
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46.
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.
Baker RG, Hoos AX, Adam SJ, Wholley D, Doroshow JH, Lowy DR, et al. The partnership for accelerating cancer therapies. Cancer J. 2018;24:111–4.
Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404.
Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A, Wankowicz SM, et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet. 2018;50:1271–81.
Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25:1916–27.
Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.
Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–8.
Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018;359:770–5.
Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537–42.
Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol. 2018;3:eaar3451.
Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5:375–86.
Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.
Twumasi-Boateng K, Pettigrew JL, Kwok YYE, Bell JC, Nelson BH. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer. 2018;18:419–32.
Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22:1048–54.
Belkowski LS, Sen GC. Inhibition of vesicular stomatitis viral mRNA synthesis by interferons. J Virol. 1987;61:653–60.
Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell. 1996;84:443–50.
Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000;6:821–5.
Alain T, Lun X, Martineau Y, Sean P, Pulendran B, Petroulakis E, et al. Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci U S A. 2010;107:1576–81.
Zakaria C, Sean P, Hoang H-D, Leroux L-P, Watson M, Workenhe ST, et al. Active-site mTOR inhibitors augment HSV1-dICP0 infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathog. 2018;14:e1007264.
Hoang H-D, Graber TE, Jia J-J, Vaidya N, Gilchrist VH, Xiang X, et al. Induction of an alternative mRNA 5′ leader enhances translation of the ciliopathy gene Inpp5e and resistance to oncolytic virus infection. Cell Rep. 2019;29:4010–23.
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30:413–21.
Alkallas R, Lajoie M, Moldoveanu D, Hoang KV, Lefrançois P, Lingrand M, et al. Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma. Nature Cancer. 2020;1:635–52.
Schachter J, Ribas A, Long GV, Arance A, Grob J-J, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390:1853–62.
Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, et al. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun. 2017;8:15440.
Qureshy Z, Johnson DE, Grandis JR. Targeting the JAK/STAT pathway in solid tumors. J Cancer Metastasis Treat. 2020;6:27.
Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.
Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.
Horn S, Leonardelli S, Sucker A, Schadendorf D, Griewank KG, Paschen A. Tumor CDKN2A-associated JAK2 loss and susceptibility to immunotherapy resistance. J Natl Cancer Inst. 2018;110:677–81.
Linsley PS, Speake C, Whalen E, Chaussabel D. Copy number loss of the interferon gene cluster in melanomas is linked to reduced T cell infiltrate and poor patient prognosis. PLoS One. 2014;9:e109760.
Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A. 1998;95:7556–61.
Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, Wind-Rotolo M, et al. Conserved interferon-gamma signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell. 2020;38:500–15.
Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170:1109–19.
Zamarin D, Ricca JM, Sadekova S, Oseledchyk A, Yu Y, Blumenschein WM, et al. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. J Clin Invest. 2018;128:1413–28.
Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.
Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171:934–49.
Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9:eaah3560.
Kalbasi A, Tariveranmoshabad M, Hakimi K, Kremer S, Campbell KM, Funes JM, et al. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci Transl Med. 2020;12:eabb0152.
Such L, Zhao F, Liu D, Thier B, Le-Trilling VTK, Sucker A, et al. Targeting the innate immunoreceptor RIG-I overcomes melanoma-intrinsic resistance to T cell immunotherapy. J Clin Invest. 2020;130:4266–81.
Torrejon DY, Abril-Rodriguez G, Champhekar AS, Tsoi J, Campbell KM, Kalbasi A, et al. Overcoming genetically based resistance mechanisms to PD-1 blockade. Cancer Discov. 2020;10:1140–57.
Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2016;35:939–51.
Koblish HK, Hansbury M, Wang L-CS, Yang G, Huang T, Xue C-B, et al. Novel immunotherapeutic activity of JAK and PI3Kδ inhibitors in a model of pancreatic cancer [abstract]. Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18–22; Philadelphia, PA.
Kirkwood JM, Iannotti N, Cho D, O'Day S, Gibney G, Hodi FS, et al. Effect of JAK/STAT or PI3Kδ plus PD-1 inhibition on the tumor microenvironment: Biomarker results from a phase Ib study in patients with advanced solid tumors [abstract]. Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14–18; Chicago, IL.
Escobar-Zarate D, Liu YP, Suksanpaisan L, Russell SJ, Peng KW. Overcoming cancer cell resistance to VSV oncolysis with JAK1/2 inhibitors. Cancer Gene Ther. 2013;20:582–9.
Patel MR, Dash A, Jacobson BA, Ji Y, Baumann D, Ismail K, et al. JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 2019;26:411–8.
Dold C, Rodriguez Urbiola C, Wollmann G, Egerer L, Muik A, Bellmann L, et al. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy. Mol Ther Oncolytics. 2016;3:16021.
المشرفين على المادة: 0 (Immune Checkpoint Inhibitors)
0 (STAT Transcription Factors)
EC 2.7.10.2 (Janus Kinases)
تواريخ الأحداث: Date Created: 20210217 Date Completed: 20220407 Latest Revision: 20220613
رمز التحديث: 20221213
DOI: 10.1158/1078-0432.CCR-20-3365
PMID: 33593882
قاعدة البيانات: MEDLINE
الوصف
تدمد:1557-3265
DOI:10.1158/1078-0432.CCR-20-3365