دورية أكاديمية

Changes in the topology of DNA replication intermediates: Important discrepancies between in vitro and in vivo.

التفاصيل البيبلوغرافية
العنوان: Changes in the topology of DNA replication intermediates: Important discrepancies between in vitro and in vivo.
المؤلفون: Schvartzman JB; Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain., Martínez V; Directorate of Research and Postgraduate Studies, Polytechnic School, National University of Asunción, P, San Lorenzo, Paraguay., Hernández P; Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain., Krimer DB; Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain., Fernández-Nestosa MJ; Directorate of Research and Postgraduate Studies, Polytechnic School, National University of Asunción, P, San Lorenzo, Paraguay.
المصدر: BioEssays : news and reviews in molecular, cellular and developmental biology [Bioessays] 2021 May; Vol. 43 (5), pp. e2000309. Date of Electronic Publication: 2021 Feb 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 8510851 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-1878 (Electronic) Linking ISSN: 02659247 NLM ISO Abbreviation: Bioessays Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Hoboken, N.J. : Wiley
Original Publication: Cambridge, UK : Published for the ICSU Press by Cambridge University Press, c1984-
مواضيع طبية MeSH: DNA Replication* , DNA Topoisomerase IV*/genetics , DNA Topoisomerase IV*/metabolism, DNA/genetics ; Nucleic Acid Conformation
مستخلص: The topology of DNA duplexes changes during replication and also after deproteinization in vitro. Here we describe these changes and then discuss for the first time how the distribution of superhelical stress affects the DNA topology of replication intermediates, taking into account the progression of replication forks. The high processivity of Topo IV to relax the left-handed (+) supercoiling that transiently accumulates ahead of the forks is not essential, since DNA gyrase and swiveling of the forks cooperate with Topo IV to accomplish this task in vivo. We conclude that despite Topo IV has a lower processivity to unlink the right-handed (+) crossings of pre-catenanes and fully replicated catenanes, this is indeed its main role in vivo. This would explain why in the absence of Topo IV replication goes-on, but fully replicated sister duplexes remain heavily catenated.
(© 2021 The Authors. BioEssays published by Wiley Periodicals LLC.)
References: Tjio, J. H., & Levan, A. (1954). Some experiences with acetic orcein in animal chromosomes. Hereditas, 3, 225-228.
Huang, Q., & Szebenyi, D. M. (2016). Improving diffraction resolution using a new dehydration method. Acta Crystallographica. Section F, Structural Biology Communications, 72(Pt 2), 152-159. https://doi.org/10.1107/S2053230x16000261.
Schvartzman, J. B., Hernandez, P., Krimer, D. B., Dorier, J., & Stasiak, A. (2019). Closing the DNA replication cycle: From simple circular molecules to supercoiled and knotted DNA catenanes. Nucleic Acids Research, 47(14), 7182-7198. https://doi.org/10.1093/nar/gkz586.
Schvartzman, J. B., & Stasiak, A. (2004). A topological view of the replicon. EMBO Reports, 5(3), 256-261. https://doi.org/10.1038/sj.embor.7400101.
Bates, A. D., & Maxwell, A. (2005). DNA topology. Oxford: Oxford University Press.
Corless, S., & Gilbert, N. (2016). Effects of DNA supercoiling on chromatin architecture. Biophysical Reviews, 8(Suppl 1), 51-64. https://doi.org/10.1007/s12551-016-0242-6.
Stone, M. D., Bryant, Z., Crisona, N. J., Smith, S. B., Vologodskii, A., Bustamante, C., & Cozzarelli, N. R. (2003). Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proceedings of the National Academy of Sciences of the USA, 100(15), 8654-8659. https://doi.org/10.1073/pnas.1133178100.
Rawdon, E. J., Dorier, J., Racko, D., Millett, K. C., & Stasiak, A. (2016). How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation. Nucleic Acids Research, 44(10), 4528-4538. https://doi.org/10.1093/nar/gkw311.
Timsit, Y., & Varnai, P. (2010). Helical chirality: A link between local interactions and global topology in DNA. PLoS One, 5(2), e9326. https://doi.org/10.1371/journal.pone.0009326.
Gilbert, N., & Allan, J. (2014). Supercoiling in DNA and chromatin. Current Opinion in Genetics & Development, 25C, 15-21. https://doi.org/10.1016/j.gde.2013.10.013.
Furuyama, T., & Henikoff, S. (2009). Centromeric nucleosomes induce positive DNA supercoils. Cell, 138(1), 104-113. https://doi.org/10.1016/j.cell.2009.04.049.
Champoux, J. J., & Been, M. D. (1980). Topoisomerases and the swivel problem. In: B. Alberts (Ed), Mechanistic studies of DNA replication and genetic recombination. (pp. 809-815). New York: Academic Press.
Ullsperger, C., Vologodskii, A. A., & Cozzarelli, N. R. (1995). Unlinking of DNA by topoisomerases during DNA replication. In: D. M. J. Lilley & F. Eckstein (Eds).), Nucleic acids and molecular biology. (pp. 115-142). Berlin: Springer-Verlag.
Adams, D. E., Shekhtman, E. M., Zechiedrich, E. L., Schmid, M. B., & Cozzarelli, N. R. (1992). The role of topoisomerase-IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell, 71(2), 277-288.
Martinez-Robles, M. L., Witz, G., Hernandez, P., Schvartzman, J. B., Stasiak, A., & Krimer, D. B. (2009). Interplay of DNA supercoiling and catenation during the segregation of sister duplexes. Nucleic Acids Research, 37(15), 5126-5137. https://doi.org/10.1093/nar/gkp530.
Cebrian, J., Kadomatsu-Hermosa, M. J., Castan, A., Martinez, V., Parra, C., Fernandez-Nestosa, M. J., Schaerer, C., Martínez-Robles, M. L., Hernández, P., Krimer, D. B., Stasiak, A., & Schvartzman, J. B. (2014). Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules. Nucleic Acids Research, 43(4), e24. https://doi.org/10.1093/nar/gku1255.
Lopez, V., Martinez-Robles, M. L., Hernandez, P., Krimer, D. B., & Schvartzman, J. B. (2012). Topo IV is the topoisomerase that knots and unknots sister duplexes during DNA replication. Nucleic Acids Research, 40(8), 3563-3573. https://doi.org/10.1093/nar/gkr1237.
Olavarrieta, L., Martinez-Robles, M. L., Sogo, J. M., Stasiak, A., Hernandez, P., Krimer, D. B., & Schvartzman, J. B. (2002). Supercoiling, knotting and replication fork reversal in partially replicated plasmids. Nucleic Acids Research, 30(3), 656-666.
Viguera, E., Hernandez, P., Krimer, D. B., Lurz, R., & Schvartzman, J. B. (2000). Visualisation of plasmid replication intermediates containing reversed forks. Nucleic Acids Research, 28(2), 498-503.doi: gkd132 [pii].
Martinez, V., Schaerer, C., Hernandez, P., Krimer, D. B., Schvartzman, J. B., & Fernandez-Nestosa, M. J. (2020). Distribution of torsional stress between the un-replicated and replicated regions in partially replicated molecules. Journal of Biomolecular Structure & Dynamics, 1-12. https://doi.org/10.1080/07391102.2020.1751294.
Sundin, O., & Varshavsky, A. (1981). Arrest of segregation leads to accumulation of highly intertwined catenated dimers dissection of the final stages of SV40 DNA replication. Cell, 25, 659-669.
Zechiedrich, E. L., Khodursky, A. B., & Cozzarelli, N. R. (1997). Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes & Development, 11(19), 2580-2592.
Helgesen, E., Saetre, F., & Skarstad, K. (2021). Topoisomerase IV tracks behind the replication fork and the SeqA complex during DNA replication in Escherichia coli. Scientific Reports, 11(1), 474. https://doi.org/10.1038/s41598-020-80043-4.
Charvin, G., Bensimon, D., & Croquette, V. (2003). Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proceedings of the National Academy of Sciences of the USA, 100(17), 9820-9825. https://doi.org/10.1073/pnas.1631550100.
Crisona, N. J., Strick, T. R., Bensimon, D., Croquette, V., & Cozzarelli, N. R. (2000). Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes & Development, 14(22), 2881-2892.
Neuman, K. C., Charvin, G., Bensimon, D., & Croquette, V. (2009). Mechanisms of chiral discrimination by topoisomerase IV. Proceedings of the National Academy of Sciences of the USA, 106(17), 6986-6991. https://doi.org/10.1073/pnas.0900574106.
Buck, G. R., & Zechiedrich, E. L. (2004). DNA disentangling by type-2 topoisomerases. Journal of Molecular Biology, 340(5), 933-939. https://doi.org/10.1016/j.jmb.2004.05.034.
Charvin, G., Strick, T. R., Bensimon, D., & Croquette, V. (2005). Topoisomerase IV bends and overtwists DNA upon binding. Biophysical Journal, 89(1), 384-392.
Bigot, S., & Marians, K. J. (2010). DNA chirality-dependent stimulation of topoisomerase IV activity by the C-terminal AAA+ domain of FtsK. Nucleic Acids Research, 38(9), 3031-3040. https://doi.org/10.1093/nar/gkp1243.
Sundin, O., & Varshavsky, A. (1980). Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell, 21, 103-114.
فهرسة مساهمة: Keywords: DNA chirality; DNA topology; catenation; pre-catenation; replication; supercoiling
المشرفين على المادة: 9007-49-2 (DNA)
EC 5.99.1.- (DNA Topoisomerase IV)
تواريخ الأحداث: Date Created: 20210225 Date Completed: 20210923 Latest Revision: 20210923
رمز التحديث: 20231215
DOI: 10.1002/bies.202000309
PMID: 33629756
قاعدة البيانات: MEDLINE