دورية أكاديمية

Effects of domestication on the gut microbiota parallel those of human industrialization.

التفاصيل البيبلوغرافية
العنوان: Effects of domestication on the gut microbiota parallel those of human industrialization.
المؤلفون: Reese AT; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.; Society of Fellows, Harvard University, Cambridge, MA, United States., Chadaideh KS; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States., Diggins CE; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States., Schell LD; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States., Beckel M; Wildlife Science Center, Stacy, MN, United States., Callahan P; Wildlife Science Center, Stacy, MN, United States., Ryan R; Wildlife Science Center, Stacy, MN, United States., Emery Thompson M; Department of Anthropology, University of New Mexico, Albuquerque, NM, United States., Carmody RN; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
المصدر: ELife [Elife] 2021 Mar 23; Vol. 10. Date of Electronic Publication: 2021 Mar 23.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
مواضيع طبية MeSH: Biological Coevolution* , Domestication* , Gastrointestinal Microbiome*, Diet/*veterinary , Mammals/*microbiology, Animals ; Humans ; Pan troglodytes/microbiology
مستخلص: Domesticated animals experienced profound changes in diet, environment, and social interactions that likely shaped their gut microbiota and were potentially analogous to ecological changes experienced by humans during industrialization. Comparing the gut microbiota of wild and domesticated mammals plus chimpanzees and humans, we found a strong signal of domestication in overall gut microbial community composition and similar changes in composition with domestication and industrialization. Reciprocal diet switches within mouse and canid dyads demonstrated the critical role of diet in shaping the domesticated gut microbiota. Notably, we succeeded in recovering wild-like microbiota in domesticated mice through experimental colonization. Although fundamentally different processes, we conclude that domestication and industrialization have impacted the gut microbiota in related ways, likely through shared ecological change. Our findings highlight the utility, and limitations, of domesticated animal models for human research and the importance of studying wild animals and non-industrialized humans for interrogating signals of host-microbial coevolution.
Competing Interests: AR, KC, CD, LS, MB, PC, RR, ME, RC No competing interests declared
(© 2021, Reese et al.)
التعليقات: Comment in: Elife. 2021 Mar 23;10:. (PMID: 33755018)
References: Nat Commun. 2019 May 16;10(1):2200. (PMID: 31097702)
PLoS Biol. 2018 Nov 15;16(11):e2005396. (PMID: 30439937)
Science. 2019 Aug 2;365(6452):. (PMID: 31371577)
Front Microbiol. 2018 Jul 02;9:1431. (PMID: 30013534)
Front Microbiol. 2017 Apr 25;8:725. (PMID: 28487687)
Nature. 2016 Apr 28;532(7600):512-6. (PMID: 27096360)
Cell. 2013 Jan 17;152(1-2):39-50. (PMID: 23332745)
Nat Microbiol. 2018 Aug;3(8):898-908. (PMID: 30038308)
Cell Host Microbe. 2015 Jan 14;17(1):72-84. (PMID: 25532804)
Sci Rep. 2019 Jan 24;9(1):703. (PMID: 30679677)
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2235-40. (PMID: 26858424)
Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9971-8. (PMID: 19528637)
Science. 2008 Jun 20;320(5883):1647-51. (PMID: 18497261)
Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):991-9. (PMID: 11516377)
ISME J. 2016 Mar;10(3):751-60. (PMID: 26394011)
ISME J. 2020 Jan;14(1):67-78. (PMID: 31495829)
Trends Ecol Evol. 2016 Sep;31(9):689-699. (PMID: 27453351)
Microbiome. 2018 Nov 22;6(1):207. (PMID: 30466491)
ISME J. 2012 Aug;6(8):1621-4. (PMID: 22402401)
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):245-253. (PMID: 29279379)
PLoS Biol. 2018 Mar 8;16(3):e2004108. (PMID: 29518091)
ISME J. 2012 Aug;6(8):1469-79. (PMID: 22278670)
Sci Rep. 2017 Nov 14;7(1):15497. (PMID: 29138485)
Science. 2011 May 20;332(6032):970-4. (PMID: 21596990)
Appl Environ Microbiol. 2006 Jul;72(7):5069-72. (PMID: 16820507)
Nature. 2006 Dec 21;444(7122):1022-3. (PMID: 17183309)
Nature. 2014 Jan 23;505(7484):559-63. (PMID: 24336217)
Genome Biol. 2019 Oct 8;20(1):201. (PMID: 31590679)
Nature. 2013 Mar 21;495(7441):360-4. (PMID: 23354050)
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22. (PMID: 20534432)
PLoS One. 2017 Oct 18;12(10):e0185306. (PMID: 29045412)
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819. (PMID: 28387841)
Sci Transl Med. 2016 Jun 15;8(343):343ra82. (PMID: 27306664)
Elife. 2013 Apr 16;2:e00458. (PMID: 23599893)
Genetics. 2014 Jul;197(3):795-808. (PMID: 25024034)
Cell. 2017 Nov 16;171(5):1015-1028.e13. (PMID: 29056339)
Med Sci Sports Exerc. 2018 Apr;50(4):747-757. (PMID: 29166320)
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16431-5. (PMID: 25368157)
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6. (PMID: 20679230)
Infect Genet Evol. 2014 Jun;24:76-81. (PMID: 24642136)
mSystems. 2017 Aug 22;2(4):. (PMID: 28845459)
Science. 2017 Aug 25;357(6353):802-806. (PMID: 28839072)
Appl Environ Microbiol. 2005 Mar;71(3):1394-404. (PMID: 15746342)
Mol Ecol. 2014 Oct;23(20):5048-60. (PMID: 25204516)
Mol Ecol. 2018 Jan;27(1):83-98. (PMID: 29165929)
Integr Comp Biol. 2017 Oct 1;57(4):690-704. (PMID: 28985326)
Nat Rev Immunol. 2013 May;13(5):321-35. (PMID: 23618829)
Nature. 2012 Aug 30;488(7413):621-6. (PMID: 22914093)
Nat Microbiol. 2019 Dec;4(12):2052-2063. (PMID: 31570867)
Cell. 2014 Aug 14;158(4):705-721. (PMID: 25126780)
PLoS One. 2016 Feb 10;11(2):e0148899. (PMID: 26863414)
BMC Vet Res. 2014 May 28;10:120. (PMID: 24884592)
Elife. 2021 Mar 23;10:. (PMID: 33755015)
Nat Methods. 2010 May;7(5):335-6. (PMID: 20383131)
Nat Rev Microbiol. 2019 Jun;17(6):383-390. (PMID: 31089293)
Environ Microbiol. 2019 Apr;21(4):1331-1343. (PMID: 30680877)
Curr Biol. 2021 Feb 8;31(3):613-620.e3. (PMID: 33232664)
Nature. 2007 May 17;447(7142):279-83. (PMID: 17507975)
mSphere. 2019 Jul 31;4(4):. (PMID: 31366708)
Curr Opin Microbiol. 2017 Aug;38:30-35. (PMID: 28458095)
Nature. 2016 Jan 14;529(7585):212-5. (PMID: 26762459)
Ecol Lett. 2014 Oct;17(10):1238-46. (PMID: 25040855)
Trends Parasitol. 2016 Jul;32(7):565-577. (PMID: 27316904)
Nat Microbiol. 2019 Jun;4(6):1057-1064. (PMID: 30911125)
Curr Opin Microbiol. 2019 Aug;50:20-27. (PMID: 31593869)
Nature. 2018 Mar 8;555(7695):210-215. (PMID: 29489753)
ISME J. 2019 May;13(5):1293-1305. (PMID: 30664674)
معلومات مُعتمدة: R01 AG049395 United States AG NIA NIH HHS; R37 AG049395 United States AG NIA NIH HHS
فهرسة مساهمة: Keywords: canid; domestication; ecology; evolutionary biology; gut microbiota; human; industrialization; mouse; rat
Local Abstract: [plain-language-summary] Living inside our gastrointestinal tracts is a large and diverse community of bacteria called the gut microbiota that plays an active role in basic body processes like metabolism and immunity. Much of our current understanding of the gut microbiota has come from laboratory animals like mice, which have very different gut bacteria to mice living in the wild. However, it was unclear whether this difference in microbes was due to domestication, and if it could also be seen in other domesticated-wild pairs, like pigs and wild boars or dogs and wolves. A few existing studies have compared the gut bacteria of two species in a domesticated-wild pair. But, studies of isolated pairs cannot distinguish which factors are responsible for altering the microbiota of domesticated animals. To overcome this barrier, Reese et al. sequenced microbial DNA taken from fecal samples of 18 species of wild and related domesticated mammals. The results showed that while domesticated animals have different sets of bacteria in their guts, leaving the wild has changed the gut microbiota of these diverse animals in similar ways. To explore what causes these shared patterns, Reese et al. swapped the diets of two domesticated-wild pairs: laboratory and wild mice, and dogs and wolves. They found this change in diet shifted the gut bacteria of the domesticated species to be more similar to that of their wild counterparts, and vice versa. This suggests that altered eating habits helped drive the changes domestication has had on the gut microbiota. To find out whether these differences also occur in humans, Reese et al. compared the gut microbes of chimpanzees with the microbiota of people living in different environments. The gut microbial communities of individuals from industrialized populations had more in common with those of domesticated animals than did the microbes found in chimpanzees or humans from non-industrialized populations. This suggests that industrialization and domestication have had similar effects on the gut microbiota, likely due to similar kinds of environmental change. Domesticated animals are critical for the economy and health, and understanding the central role gut microbes play in their biology could help improve their well-being. Given the parallels between domestication and industrialization, knowledge gained from animal pairs could also shed light on the human gut microbiota. In the future, these insights could help identify new ways to alter the gut microbiota to improve animal or human health.
تواريخ الأحداث: Date Created: 20210323 Date Completed: 20210903 Latest Revision: 20220731
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC7987347
DOI: 10.7554/eLife.60197
PMID: 33755015
قاعدة البيانات: MEDLINE
الوصف
تدمد:2050-084X
DOI:10.7554/eLife.60197