دورية أكاديمية

Computationally guided high-throughput design of self-assembling drug nanoparticles.

التفاصيل البيبلوغرافية
العنوان: Computationally guided high-throughput design of self-assembling drug nanoparticles.
المؤلفون: Reker D; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; Department of Biomedical Engineering, Duke University, Durham, NC, USA., Rybakova Y; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Kirtane AR; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Cao R; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Division of Engineering Science, University of Toronto, Toronto, Ontario, Canada., Yang JW; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA., Navamajiti N; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand., Gardner A; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA., Zhang RM; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA., Esfandiary T; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., L'Heureux J; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., von Erlach T; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Smekalova EM; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Leboeuf D; Skolkovo Institute of Science and Technology, Moscow, Russia., Hess K; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Lopes A; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Rogner J; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Collins J; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Tamang SM; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Ishida K; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Chamberlain P; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Yun D; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Lytton-Jean A; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Soule CK; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Cheah JH; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Hayward AM; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA., Langer R; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA., Traverso G; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. cgt20@mit.edu.; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. cgt20@mit.edu.
المصدر: Nature nanotechnology [Nat Nanotechnol] 2021 Jun; Vol. 16 (6), pp. 725-733. Date of Electronic Publication: 2021 Mar 25.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101283273 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-3395 (Electronic) Linking ISSN: 17483387 NLM ISO Abbreviation: Nat Nanotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group, 2006-
مواضيع طبية MeSH: Drug Carriers/*chemistry , High-Throughput Screening Assays/*methods , Nanoparticles/*chemistry , Sorafenib/*pharmacology , Terbinafine/*pharmacology, Animals ; Candida albicans/drug effects ; Computer Simulation ; Drug Carriers/chemical synthesis ; Drug Design ; Drug Evaluation, Preclinical/methods ; Dynamic Light Scattering ; Excipients/chemistry ; Female ; Glycyrrhizic Acid/chemistry ; Humans ; Machine Learning ; Mice, Inbred Strains ; Skin Absorption ; Sorafenib/chemistry ; Sorafenib/pharmacokinetics ; Taurocholic Acid/chemistry ; Terbinafine/chemistry ; Tissue Distribution ; Xenograft Model Antitumor Assays ; Mice
مستخلص: Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.
References: Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C. & Reynolds, C. H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 13, 105–121 (2014). (PMID: 10.1038/nrd4163)
Irwin, J. J. et al. An aggregation advisor for ligand discovery. J. Med. Chem. 58, 7076–7087 (2015). (PMID: 10.1021/acs.jmedchem.5b01105)
Reker, D., Bernardes, G. J. L. & Rodrigues, T. Computational advances in combating colloidal aggregation in drug discovery. Nat. Chem. 11, 402–418 (2019). (PMID: 10.1038/s41557-019-0234-9)
Owen, S. C., Doak, A. K., Wassam, P., Shoichet, M. S. & Shoichet, B. K. Colloidal aggregation affects the efficacy of anticancer drugs in cell culture. ACS Chem. Biol. 7, 1429–1435 (2012). (PMID: 10.1021/cb300189b)
Kipp, J. E. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284, 109–122 (2004). (PMID: 10.1016/j.ijpharm.2004.07.019)
Mcdonald, T. O. et al. Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation. Adv. Healthc. Mater. 3, 400–411 (2014). (PMID: 10.1002/adhm.201300280)
Govender, T., Stolnik, S., Garnett, M. C., Illum, L. & Davis, S. S. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release 57, 171–185 (1999). (PMID: 10.1016/S0168-3659(98)00116-3)
Westesen, K., Bunjes, H. & Koch, M. H. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 48, 223–236 (1997). (PMID: 10.1016/S0168-3659(97)00046-1)
Reker, D. et al. ‘Inactive’ ingredients in oral medications. Sci. Transl. Med. 11, eaau6753 (2019). (PMID: 10.1126/scitranslmed.aau6753)
McLaughlin, C. K. et al. Stable colloidal drug aggregates catch and release active enzymes. ACS Chem. Biol. 11, 992–1000 (2016). (PMID: 10.1021/acschembio.5b00806)
Shamay, Y. et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018). (PMID: 10.1038/s41563-017-0007-z)
Inactive Ingredient Search for Approved Drug Products (FDA, 2016); https://www.accessdata.fda.gov/scripts/cder/iig/.
Feng, B. Y., Shelat, A., Dorman, T. N., Guy, R. K. & Shoichet, B. K. High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol. 1, 146–148 (2005). (PMID: 10.1038/nchembio718)
SCOGS (Select Committee on GRAS Substances) (FDA, 2016); https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS.
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018). (PMID: 10.1093/nar/gkx1037)
Reker, D. et al. Machine learning uncovers food- and excipient-drug interactions. Cell Rep. 30, 3710–3716.e4 (2020). (PMID: 10.1016/j.celrep.2020.02.094)
Reker, D., Schneider, P. & Schneider, G. Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors. Chem. Sci. 7, 3919–3927 (2016). (PMID: 10.1039/C5SC04272K)
Gregori-Puigjane, E. & Mestres, J. A ligand-based approach to mining the chemogenomic space of drugs. Comb. Chem. High T. Scr. 11, 669–676 (2008).
Wildman, S. A. & Crippen, G. M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comp. Sci. 39, 868–873 (1999). (PMID: 10.1021/ci990307l)
Chuang, K. V. & Keiser, M. J. Adversarial controls for scientific machine learning. ACS Chem. Biol. 13, 2819–2821 (2018). (PMID: 10.1021/acschembio.8b00881)
Test no. 318: dispersion stability of nanomaterials in simulated environmental media. OECD Guidelines for the Testing of Chemicals, Section 3 https://doi.org/10.1787/9789264284142-en (2017).
Lipner, S. R. & Scher, R. K. Onychomycosis: treatment and prevention of recurrence. J. Am. Acad. Dermatol. 80, 853–867 (2019). (PMID: 10.1016/j.jaad.2018.05.1260)
McClellan, K. J., Wiseman, L. R. & Markham, A. Terbinafine. Drugs 58, 179–202 (1999). (PMID: 10.2165/00003495-199958010-00018)
Matteucci, M. E., Hotze, M. A., Johnston, K. P. & Williams, R. O. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir 22, 8951–8959 (2006). (PMID: 10.1021/la061122t)
Ganesh, A. N. et al. Colloidal drug aggregate stability in high serum conditions and pharmacokinetic consequence. ACS Chem. Biol. 14, 751–757 (2019). (PMID: 10.1021/acschembio.9b00032)
Jayatilake, J. A. M. S., Tilakaratne, W. M. & Panagoda, G. J. Candidal onychomycosis: a mini-review. Mycopathologia 168, 165–173 (2009). (PMID: 10.1007/s11046-009-9212-x)
Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011). (PMID: 10.1038/nnano.2011.166)
Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA 108, 2426–2431 (2011). (PMID: 10.1073/pnas.1018382108)
Pavlović, N. et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front. Pharmacol. 9, 1283 (2018). (PMID: 10.3389/fphar.2018.01283)
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019). (PMID: 10.1056/NEJMra1713263)
El-Serag, H. B. & Mason, A. C. Rising incidence of hepatocellular carcinoma in the United States. N. Engl. J. Med. 340, 745–750 (1999). (PMID: 10.1056/NEJM199903113401001)
Isbrucker, R. A. A. & Burdock, G. A. A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul. Toxicol. Pharm. 46, 167–192 (2006). (PMID: 10.1016/j.yrtph.2006.06.002)
Basso, U., Brunello, A., Bertuzzi, A. & Santoro, A. Sorafenib is active on lung metastases from synovial sarcoma. Ann. Oncol. 20, 386–387 (2009). (PMID: 10.1093/annonc/mdn685)
Chaparro, M., González Moreno, L., Trapero-Marugán, M., Medina, J. & Moreno-Otero, R. Review article: pharmacological therapy for hepatocellular carcinoma with sorafenib and other oral agents. Aliment. Pharm. Ther. 28, 1269–1277 (2008). (PMID: 10.1111/j.1365-2036.2008.03857.x)
Zhong, J. et al. Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis. Oncol. Rep. 34, 2142–2150 (2015). (PMID: 10.3892/or.2015.4181)
Auffan, M. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. https://doi.org/10.1038/nnano.2009.242 (2009).
Lin, A. et al. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int. J. Pharm. 359, 247–253 (2008). (PMID: 10.1016/j.ijpharm.2008.03.039)
Tward, A. D. et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc. Natl Acad. Sci. USA 104, 14771–14776 (2007). (PMID: 10.1073/pnas.0706578104)
Bogorad, R. L. et al. Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nat. Commun. 5, 3869 (2014). (PMID: 10.1038/ncomms4869)
Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006). (PMID: 10.1016/j.ccr.2006.03.030)
Sharpless, N. E. & DePinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 5, 741–754 (2006). (PMID: 10.1038/nrd2110)
Waidely, E., Al-Yuobi, A. R. O., Bashammakh, A. S., El-Shahawi, M. S. & Leblanc, R. M. Serum protein biomarkers relevant to hepatocellular carcinoma and their detection. Analyst 141, 36–44 (2016). (PMID: 10.1039/C5AN01884F)
Lee, C. H. et al. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biol. Pharm. Bull. 30, 1898–1904 (2007). (PMID: 10.1248/bpb.30.1898)
Gelderblom, H., Verweij, J., Nooter, K., Sparreboom, A. & Cremophor, E. L. The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37, 1590–1598 (2001). (PMID: 10.1016/S0959-8049(01)00171-X)
Singh, A., Iyer, A. K. & Amiji, M. M. in Handbook of Nanobiomedical Research (ed. Torchilin, V.) 199–233 (World Scientific Publishing Company, 2014); https://doi.org/10.1142/9789814520652_0006.
Pohjala, L., Tammela, P., Pohjala, L. & Tammela, P. Aggregating behavior of phenolic compounds—a source of false bioassay results? Molecules 17, 10774–10790 (2012). (PMID: 10.3390/molecules170910774)
Traverso, G. & Langer, R. Perspective: special delivery for the gut. Nature 519, S19 (2015). (PMID: 10.1038/519S19a)
Cheng, C. J. & Saltzman, W. M. Nanomedicine: downsizing tumour therapeutics. Nat. Nanotechnol. 7, 346–347 (2012). (PMID: 10.1038/nnano.2012.89)
معلومات مُعتمدة: 168827 Switzerland SNSF_ Swiss National Science Foundation; P30 CA014051 United States CA NCI NIH HHS; R01 EB000244 United States EB NIBIB NIH HHS; R37 EB000244 United States EB NIBIB NIH HHS
المشرفين على المادة: 0 (Drug Carriers)
0 (Excipients)
5E090O0G3Z (Taurocholic Acid)
6FO62043WK (Glycyrrhizic Acid)
9ZOQ3TZI87 (Sorafenib)
G7RIW8S0XP (Terbinafine)
تواريخ الأحداث: Date Created: 20210326 Date Completed: 20210906 Latest Revision: 20240923
رمز التحديث: 20240923
مُعرف محوري في PubMed: PMC8197729
DOI: 10.1038/s41565-021-00870-y
PMID: 33767382
قاعدة البيانات: MEDLINE
الوصف
تدمد:1748-3395
DOI:10.1038/s41565-021-00870-y