دورية أكاديمية

Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales.

التفاصيل البيبلوغرافية
العنوان: Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales.
المؤلفون: Knox SH; Department of Geography, The University of British Columbia, Vancouver, BC, Canada., Bansal S; Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, ND, USA., McNicol G; Department of Earth System Science, Stanford University, Stanford, CA, USA., Schafer K; Department of Earth and Environmental Science, Rutgers University Newark, New Brunswick, NJ, USA., Sturtevant C; National Ecological Observatory Network, Battelle, Boulder, CO, USA., Ueyama M; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan., Valach AC; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA., Baldocchi D; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA., Delwiche K; Department of Earth System Science, Stanford University, Stanford, CA, USA., Desai AR; Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA., Euskirchen E; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA., Liu J; Western Geographic Science Center, U.S. Geological Survey, Moffett Field, CA, USA., Lohila A; Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.; Climate System Research, Finnish Meteorological Institute, Helsinki, Finland., Malhotra A; Department of Earth System Science, Stanford University, Stanford, CA, USA., Melling L; Sarawak Tropical Peat Research Institute, Sarawak, Malaysia., Riley W; Earth and Environmental Sciences Area, Lawrence Berkeley National Lab, Berkeley, CA, USA., Runkle BRK; Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA., Turner J; Freshwater and Marine Science, University of Wisconsin-Madison, Madison, WI, USA., Vargas R; Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA., Zhu Q; Earth and Environmental Sciences Area, Lawrence Berkeley National Lab, Berkeley, CA, USA., Alto T; Climate System Research, Finnish Meteorological Institute, Helsinki, Finland., Fluet-Chouinard E; Department of Earth System Science, Stanford University, Stanford, CA, USA., Goeckede M; Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany., Melton JR; Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada., Sonnentag O; Département de Géographie, Université de Montréal, Montréal, QC, Canada., Vesala T; Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.; Yugra State University, Khanty-Mansiysk, Russia., Ward E; Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, LA, USA., Zhang Z; Department of Geographical Sciences, University of Maryland, College Park, MD, USA., Feron S; Department of Earth System Science, Stanford University, Stanford, CA, USA.; Department of Physics, University of Santiago, Santiago de Chile, Chile., Ouyang Z; Department of Earth System Science, Stanford University, Stanford, CA, USA., Alekseychik P; Natural Resources Institute Finland (LUKE), Helsinki, Finland., Aurela M; Climate System Research, Finnish Meteorological Institute, Helsinki, Finland., Bohrer G; Department of Civil, Environmental & Geodetic Engineering, Ohio State University, Columbus, OH, USA., Campbell DI; School of Science, University of Waikato, Hamilton, New Zealand., Chen J; Department of Geography, Environment, and Spatial Sciences, & Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, USA., Chu H; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA., Dalmagro HJ; Universidade de Cuiaba, Cuiaba, Brazil., Goodrich JP; School of Science, University of Waikato, Hamilton, New Zealand., Gottschalk P; GFZ German Research Centre for Geosciences, Potsdam, Germany., Hirano T; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan., Iwata H; Department of Environmental Science, Faculty of Science, Shinshu University, Matsumoto, Japan., Jurasinski G; University of Rostock, Rostock, Germany., Kang M; National Center for Agro Meteorology, Seoul, South Korea., Koebsch F; University of Rostock, Rostock, Germany., Mammarella I; Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland., Nilsson MB; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden., Ono K; Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan., Peichl M; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden., Peltola O; Climate System Research, Finnish Meteorological Institute, Helsinki, Finland., Ryu Y; Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea., Sachs T; GFZ German Research Centre for Geosciences, Potsdam, Germany., Sakabe A; Kyoto University, Kyoto, Japan., Sparks JP; Department of Ecology and Evolutionary Biology, Cornell, Ithaca, NY, USA., Tuittila ES; School of Forest Sciences, University of Eastern Finland, Joesnuu, Finland., Vourlitis GL; California State University San Marcos, San Marcos, CA, USA., Wong GX; Sarawak Tropical Peat Research Institute, Sarawak, Malaysia., Windham-Myers L; U.S. Geological Survey, Menlo Park, CA, USA., Poulter B; Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA., Jackson RB; Department of Earth System Science, Stanford University, Stanford, CA, USA.; Woods Institute for the Environment, Stanford University, Stanford, CA, USA.; Precourt Institute for Energy, Stanford University, Stanford, CA, USA.
المصدر: Global change biology [Glob Chang Biol] 2021 Aug; Vol. 27 (15), pp. 3582-3604. Date of Electronic Publication: 2021 May 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Methane* , Wetlands*, Carbon Dioxide ; Ecosystem ; Fresh Water ; Seasons
مستخلص: While wetlands are the largest natural source of methane (CH 4 ) to the atmosphere, they represent a large source of uncertainty in the global CH 4 budget due to the complex biogeochemical controls on CH 4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH 4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH 4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH 4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH 4 emissions.
(© 2021 John Wiley & Sons Ltd.)
References: Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. https://doi.org/10.1002/wics.101.
Angle, J. C., Morin, T. H., Solden, L. M., Narrowe, A. B., Smith, G. J., Borton, M. A., Rey-Sanchez, C., Daly, R. A., Mirfenderesgi, G., Hoyt, D. W., Riley, W. J., Miller, C. S., Bohrer, G., & Wrighton, K. C. (2017). Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Communications, 8(1567). https://doi.org/10.1038/s41467-017-01753-4.
Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - The state and future of the eddy covariance method. Global Change Biology, 20(12), 3600-3609. https://doi.org/10.1111/gcb.12649.
Bansal, S., Johnson, O. F., Meier, J., & Zhu, X. (2020). Vegetation affects timing and location of wetland methane emissions. Journal of Geophysical Research: Biogeosciences, 125, e2020JG00577. https://doi.org/10.1029/2020JG005777.
Bansal, S., Tangen, B., & Finocchiaro, R. (2018). Diurnal patterns of methane flux from a seasonal wetland: Mechanisms and methodology. Wetlands, 38(5), 933-943. https://doi.org/10.1007/s13157-018-1042-5.
Barber, T. R., Burke, Jr., R. A., & Sackett, W. M. (1988). Diffusive flux of methane from warm wetlands. Global Biogeochemical Cycles, 2(4), 411-425. https://doi.org/10.1029/GB002i004p00411.
Bellisario, L. M., Bubier, J. L., Moore, T. R., & Chanton, J. P. (1999). Controls on CH4 emissions from a northern peatland. Global Biogeochemical Cycles, 13(1), 81-91. https://doi.org/10.1029/1998GB900021.
Bohrer, G., Kerns, J., Morin, T. H., Rey-Sanchez, A. C., Villa, J., & Ju, Y. (2020). FLUXNET-CH4 US-OWC old woman creek. United States. https://doi.org/10.18140/FLX/1669690.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1325-1346. https://doi.org/10.1111/gcb.12131.
Bubier, J. L., Moore, T. R., Bellisario, L., Comer, N. T., & Crill, P. M. (1995). Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochemical Cycles, 9(4), 455-470. https://doi.org/10.1029/95gb02379.
Campbell, D., & Goodrich, J. (2020). FLUXNET-CH4 NZ-kop kopuatai. New Zealand. https://doi.org/10.18140/FLX/1669652.
Casper, P., Maberly, S. C., Hall, G. H., & Finlay, B. J. (2000). Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry, 49(1), 1-19. https://doi.org/10.1023/A:1006269900174.
Chamberlain, S. D., Verfaillie, J., Eichelmann, E., Hemes, K. S., & Baldocchi, D. D. (2017). Evaluation of density corrections to methane fluxes measured by open-path eddy covariance over contrasting landscapes. Boundary-Layer Meteorology, 165(2), 197-210. https://doi.org/10.1007/s10546-017-0275-9.
Chang, K., Riley, W. J., Brodie, E. L., McCalley, C. K., Crill, P. M., & Grant, R. F. (2019). Methane production pathway regulated proximally by substrate availability and distally by temperature in a high-latitude mire complex. Journal of Geophysical Research: Biogeosciences, 124(10), 3057-3074. https://doi.org/10.1029/2019JG005355.
Chang, K. Y., Riley, W. J., Knox, S. H., Jackson, R. B., McNicol, G., Poulter, B., Aurela, M., Baldocchi, D., Bansal, S., Bohrer, G., Campbell, D. I., Cescatti, A., Chu, H., Delwiche, K. B., Desai, A., Euskirchen, E., Friborg, T., Goeckede, M., Holm, G., … Zona, D. (2021). Global wetland methane emissions have hysteretic responses to seasonal temperature. Nature Communications, 12, 2266. https://doi.org/10.1038/s41467-021-22452-1.
Chanton, J. P., Martens, C. S., & Kelley, C. A. (1989). Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnology and Oceanography, 34(5), 807-819. https://doi.org/10.4319/lo.1989.34.5.0807.
Chanton, J. P., Whiting, G. J., Blair, N. E., Lindau, C. W., & Bollich, P. K. (1997). Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochemical Cycles, 11(1), 15-27. https://doi.org/10.1029/96GB03761.
Chen, J., & Chu, H. (2020). FLUXNET-CH4 US-WPT winous point north marsh. United States. https://doi.org/10.18140/FLX/1669702.
Chen, W., Zhang, F., Wang, B., Wang, J., Tian, D., Han, G., Wen, X., Yu, G., & Niu, S. (2019). Diel and seasonal dynamics of ecosystem-scale methane flux and their determinants in an alpine meadow. Journal of Geophysical Research: Biogeosciences, 124(6), 1731-1745. https://doi.org/10.1029/2019jg005011.
Chen, X., Schäfer, K. V. R., & Slater, L. (2017). Methane emission through ebullition from an estuarine mudflat: 2. Field observations and modeling of occurrence probability. Water Resources Research, 53(8), 6439-6453. https://doi.org/10.1002/2016wr019720.
Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., Svensson, B. H., Nykänen, H., Martikainen, P. J., & Oskarsson, H. (2003). Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters, 30(7), 261. https://doi.org/10.1029/2002GL016848.
Chu, H., Chen, J., Gottgens, J. F., Ouyang, Z., John, R., Czajkowski, K., & Becker, R. (2014). Net ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh and a nearby cropland. Journal of Geophysical Research: Biogeosciences, 119(5), 722-740. https://doi.org/10.1002/2013JG002520.
Cornish, C. R., Percival, D. B., & Bretherton, C. S. (2003). The WMTSA Wavelet Toolkit for data analysis in the geosciences. Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract NG11A-0173.
Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E., Chea, Y.-W., Christianson, D., Alberto, M. C. R., Alekseychik, P., Aurela, M., & others. (in press). FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data.
Desai, A. R. (2020). FLUXNET-CH4 US-Los lost creek. United States. https://doi.org/10.18140/FLX/1669682.
Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D., Andrews, A. E., Cook, B. D., King, J. Y., & Kolka, R. (2015). Landscape-level terrestrial methane flux observed from a very tall tower. Agricultural and Forest Meteorology, 201, 61-75. https://doi.org/10.1016/j.agrformet.2014.10.017.
Detto, M., Molini, A., Katul, G., Stoy, P., Palmroth, S., & Baldocchi, D. (2012). Causality and persistence in ecological systems: A nonparametric spectral granger causality approach. The American Naturalist, 179(4), 524-535. https://doi.org/10.1086/664628.
Eichelmann, E., Knox, S., Rey-Sanchez, A. C., Valach, A., Sturtevant, C., Szutu, D., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH4 US-Tw4 twitchell east end wetland. United States. https://doi.org/10.18140/FLX/1669698.
Engle, D., & Melack, J. M. (2000). Methane emissions from an Amazon floodplain lake: Enhanced release during episodic mixing and during falling water. Biogeochemistry, 51(1), 71-90. https://doi.org/10.1023/A:1006389124823.
Etminan, M., Myhre, G., Highwood, E. J., & Shine, K. P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43(24), 12614-12623. https://doi.org/10.1002/2016gl071930.
Fechner-Levy, E. J., & Hemond, H. F. (1996). Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnology and Oceanography, 41(7), 1375-1383. https://doi.org/10.4319/lo.1996.41.7.1375.
Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review A: General Physics, 33(2), 1134-1140. https://doi.org/10.1103/physreva.33.1134.
Frenzel, S., & Pompe, B. (2007). Partial mutual information for coupling analysis of multivariate time series. Physical Review Letters, 99(20), 204101. https://doi.org/10.1103/PhysRevLett.99.204101.
Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 2225-2236. https://doi.org/10.1016/j.patrec.2010.03.014.
Goodrich, J. P., Campbell, D. I., Roulet, N. T., Clearwater, M. J., & Schipper, L. A. (2015). Overriding control of methane flux temporal variability by water table dynamics in a Southern Hemisphere, raised bog. Journal of Geophysical Research: Biogeosciences, 120(5), 819-831. https://doi.org/10.1002/2014JG002844.
Hargreaves, K. J., Fowler, D., Pitcairn, C. E. R., & Aurela, M. (2001). Annual methane emission from Finnish mires estimated from eddy covariance campaign measurements. Theoretical and Applied Climatology, 70(1), 203-213. https://doi.org/10.1007/s007040170015.
Hatala, J. A., Detto, M., & Baldocchi, D. D. (2012). Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophysical Research Letters, 39(6), https://doi.org/10.1029/2012GL051303.
Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., & Baldocchi, D. D. (2012). Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agriculture, Ecosystems & Environment, 150, 1-18. https://doi.org/10.1016/j.agee.2012.01.009.
Hollinger, D. Y., & Richardson, A. D. (2005). Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiology, 25(7), 873-885. https://doi.org/10.1093/treephys/25.7.873.
Iwata, H. (2020). FLUXNET-CH4 JP-Mse Mase rice paddy field. Japan. https://doi.org/10.18140/FLX/1669647.
Iwata, H., Ueyama, M., & Harazono, Y. (2020). FLUXNET-CH4 US-Uaf University of Alaska, Fairbanks. United States. https://doi.org/10.18140/FLX/1669701.
Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., Bergamaschi, P., Niwa, Y., Segers, A., & Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15, 071002. https://doi.org/10.1088/1748-9326/ab9ed2.
Jammet, M., Dengel, S., Kettner, E., Parmentier, F.-J.-W., Wik, M., Crill, P., & Friborg, T. (2017). Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences, 14(22), 5189-5216. https://doi.org/10.5194/bg-14-5189-2017.
Kim, D.-G., Vargas, R., Bond-Lamberty, B., & Turetsky, M. R. (2012). Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences, 9(7), 2459-2483. https://doi.org/10.5194/bg-9-2459-2012.
Kim, Y., Johnson, M. S., Knox, S. H., Andrew Black, T., Dalmagro, H. J., Kang, M., Kim, J., & Baldocchi, D. (2020). Gap-filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis. Global Change Biology, 26(3), 1499-1518. https://doi.org/10.1111/gcb.14845.
Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., & Pfeiffer, E. (2015). Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. Journal of Geophysical Research: Biogeosciences, 120(12), 2525-2541. https://doi.org/10.1002/2015JG003053.
Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois, M., Papale, D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M. S., Mammarella, I., Trotta, C., Aurela, M., Bohrer, G., … Zona, D. (2019). FLUXNET-CH4 synthesis activity: Objectives, observations, and future directions. Bulletin of the American Meteorological Society, 100(12), 2607-2632. https://doi.org/10.1175/BAMS-D-18-0268.1.
Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., & Baldocchi, D. (2016). Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research: Biogeosciences, 121(3), 978-1001. https://doi.org/10.1002/2015JG003247.
Knox, S., Matthes, J. H., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH4 US-Twt Twitchell Island. https://doi.org/10.18140/FLX/1669700.
Koebsch, F., Gottschalk, P., Beyer, F., Wille, C., Jurasinski, G., & Sachs, T. (2020). The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 375(1810), 20190685. https://doi.org/10.1098/rstb.2019.0685.
Koebsch, F., & Jurasinski, G. (2020). FLUXNET-CH4 DE-Hte Huetelmoor. Germany. https://doi.org/10.18140/FLX/1669634.
Koebsch, F., Jurasinski, G., Koch, M., Hofmann, J., & Glatzel, S. (2015). Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 204, 94-105. https://doi.org/10.1016/j.agrformet.2015.02.002.
Koebsch, F., Sonnentag, O., Järveoja, J., Peltoniemi, M., Alekseychik, P., Aurela, M., Arslan, A. N., Dinsmore, K., Gianelle, D., Helfter, C., Jackowicz-Korczynski, M., Korrensalo, A., Leith, F., Linkosalmi, M., Lohila, A., Lund, M., Maddison, M., Mammarella, I., Mander, Ü., … Peichl, M. (2020). Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Global Change Biology, 26(2), 876-887. https://doi.org/10.1111/gcb.14905.
Kwon, M. J., Beulig, F., Ilie, I., Wildner, M., Küsel, K., Merbold, L., Mahecha, M. D., Zimov, N., Zimov, S. A., Heimann, M., Schuur, E. A. G., Kostka, J. E., Kolle, O., Hilke, I., & Göckede, M. (2017). Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology, 23(6), 2396-2412. https://doi.org/10.1111/gcb.13558.
Laanbroek, H. J. (2010). Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105(1), 141-153. https://doi.org/10.1093/aob/mcp201.
Lai, D. Y. F. (2009). Methane dynamics in northern peatlands: A review. Pedosphere, 19(4), 409-421. https://doi.org/10.1016/s1002-0160(09)00003-4.
Li, H., Dai, S., Ouyang, Z., Xie, X., Guo, H., Gu, C., Xiao, X., Ge, Z., Peng, C., & Zhao, B. (2018). Multi-scale temporal variation of methane flux and its controls in a subtropical tidal salt marsh in eastern China. Biogeochemistry, 137(1), 163-179. https://doi.org/10.1007/s10533-017-0413-y.
Linkhorst, A., Hiller, C., DelSontro, T., M. Azevedo, G., Barros, N., Mendonça, R., & Sobek, S. (2020). Comparing methane ebullition variability across space and time in a Brazilian reservoir. Limnology and Oceanography, 65(7), 1623-1634. https://doi.org/10.1002/lno.11410.
Lohila, A., Aurela, M., Tuovinen, J.-P., Laurila, T., Hatakka, J., Rainne, J., & Mäkelä, T. (2020). FLUXNET-CH4 FI-Lom Lompolojankka. Finland. https://doi.org/10.18140/FLX/1669638.
Malhotra, A., & Roulet, N. T. (2015). Environmental correlates of peatland carbon fluxes in a thawing landscape: Do transitional thaw stages matter? Biogeosciences, 12(10), 3119-3130. https://doi.org/10.5194/bg-12-3119-2015.
Marushchak, M. E., Friborg, T., Biasi, C., Herbst, M., Johansson, T., Kiepe, I., Liimatainen, M., Lind, S. E., Martikainen, P. J., Virtanen, T., Soegaard, H., & Shurpali, N. J. (2016). Methane dynamics in the subarctic tundra: Combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 13(2), 597-608. https://doi.org/10.5194/bg-13-597-2016.
Matthes, J. H., Sturtevant, C., Oikawa, P., Chamberlain, S. D., Szutu, D., Ortiz, A. A., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH4 US-Myb Mayberry Wetland. United States. https://doi.org/10.18140/FLX/1669685.
Mattson, M. D., & Likens, G. E. (1990). Air pressure and methane fluxes. Nature, 347(6295), 718-719. https://doi.org/10.1038/347718b0.
McNicol, G., Sturtevant, C. S., Knox, S. H., Dronova, I., Baldocchi, D. D., & Silver, W. L. (2017). Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Global Change Biology, 23(7), 2768-2782. https://doi.org/10.1111/gcb.13580.
Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2004). Anaerobic metabolism: linkages to trace gases and aerobic processes. In W. Schlesinger, H. Holland, & K. Turekian (Eds.), Treatise on geochemistry (Vol. 8, pp. 317-424). Elsevier.
Mitra, B., Minick, K., Miao, G., Domec, J.-C., Prajapati, P., McNulty, S. G., Sun, G., King, J. S., & Noormets, A. (2020). Spectral evidence for substrate availability rather than environmental control of methane emissions from a coastal forested wetland. Agricultural and Forest Meteorology, 291, 108062. https://doi.org/10.1016/j.agrformet.2020.108062.
Molini, A., Katul, G. G., & Porporato, A. (2010). Causality across rainfall time scales revealed by continuous wavelet transforms. Journal of Geophysical Research, 115(D14), 579. https://doi.org/10.1029/2009JD013016.
Moore, T. R., & Dalva, M. (1993). The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science, 44(4), 651-664. https://doi.org/10.1111/j.1365-2389.1993.tb02330.x.
Moore, T. R., & Knowles, R. (1989). The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science, 69(1), 33-38. https://doi.org/10.4141/cjss89-004.
Morin, T. H. (2019). Advances in the eddy covariance approach to CH4 monitoring over two and a half decades. Journal of Geophysical Research: Biogeosciences, 124(3), 453-460. https://doi.org/10.1029/2018JG004796.
Morin, T. H., Bohrer, G., Frasson, R. P. D. M., Naor-Azreli, L., Mesi, S., Stefanik, K. C., & Schäfer, K. V. R. (2014). Environmental drivers of methane fluxes from an urban temperate wetland park. Journal of Geophysical Research: Biogeosciences, 119(11), 2188-2208. https://doi.org/10.1002/2014JG002750.
Nadeau, D. F., Rousseau, A. N., Coursolle, C., Margolis, H. A., & Parlange, M. B. (2013). Summer methane fluxes from a boreal bog in northern Quebec, Canada, using eddy covariance measurements. Atmospheric Environment, 81, 464-474. https://doi.org/10.1016/j.atmosenv.2013.09.044.
Nemitz, E., Mammarella, I., Ibrom, A., Aurela, M., Burba, G. G., Dengel, S., Gielen, B., Grelle, A., Heinesch, B., Herbst, M., Hörtnagl, L., Klemedtsson, L., Lindroth, A., Lohila, A., McDermitt, D. K., Meier, P., Merbold, L., Nelson, D., Nicolini, G., … Zahniser, M. (2018). Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. International Agrophysics, 32(4), 517-549. https://doi.org/10.1515/intag-2017-0042.
Nilsson, M. B., & Peichl, M. (2020). FLUXNET-CH4 SE-Deg Degero. Sweden. https://doi.org/10.18140/FLX/1669659.
Oikawa, P. Y., Jenerette, G. D., Knox, S. H., Sturtevant, C., Verfaillie, J., Dronova, I., Poindexter, C. M., Eichelmann, E., & Baldocchi, D. D. (2017). Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. Journal of Geophysical Research: Biogeosciences, 122(1), 145-167. https://doi.org/10.1002/2016JG003438.
Olefeldt, D., Turetsky, M. R., Crill, P. M., & David McGuire, A. (2013). Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Global Change Biology, 19(2), 589-603. https://doi.org/10.1111/gcb.12071.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., Damico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51(11), 933.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., … Aalto, T. (2019). Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 11(3), 1263-1289. https://doi.org/10.5194/essd-11-1263-2019.
Perryman, C. R., McCalley, C. K., Malhotra, A., Florencia Fahnestock, M., Kashi, N. N., Bryce, J. G., Giesler, R., & Varner, R. K. (2020). Thaw transitions and redox conditions drive methane oxidation in a permafrost peatland. Journal of Geophysical Research: Biogeosciences, 125(3). https://doi.org/10.1029/2019jg005526.
Pugh, C. A., Reed, D. E., Desai, A. R., & Sulman, B. N. (2018). Wetland flux controls: How does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin? Biogeochemistry, 137(1), 15-25. https://doi.org/10.1007/s10533-017-0414-x.
Pypker, T. G., Moore, P. A., Hribljan, J. A., & Chimner, R. (2013). Shifting environmental controls on CH4 fluxes in a sub-boreal peatland. Biogeosciences, 10, 7971-7981. https://doi.org/10.5194/bg-10-7971-2013.
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Rinne, J., Tuittila, E.-S., Peltola, O., Li, X., Raivonen, M., Alekseychik, P., Haapanala, S., Pihlatie, M., Aurela, M., Mammarella, I., & Vesala, T. (2018). Temporal variation of ecosystem scale methane emission from a boreal fen in relation to temperature, water table position, and carbon dioxide fluxes. Global Biogeochemical Cycles, 32(7), 1087-1106. https://doi.org/10.1029/2017gb005747.
Ruddell, B. L., & Kumar, P. (2009). Ecohydrologic process networks: 1. Identification. Water Resources Research, 45(3). https://doi.org/10.1029/2008WR007279.
Ruddell, B. L., Sturtevant, C., Kang, M., & Yu, R. (2008). ProcessNetwork Software (Version 1.5) [Computer software]. https://github.com/ProcessNetwork/ProcessNetwork_Software.
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., Muñoz-Marí, J., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., … Zscheischler, J. (2019). Inferring causation from time series in Earth system sciences. Nature Communications, 10(2553). https://doi.org/10.1038/s41467-019-10105-3.
Runkle, B. R. K., Suvočarev, K., Reba, M. L., Reavis, C. W., Smith, S. F., Chiu, Y.-L., & Fong, B. (2019). Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. Environmental Science & Technology, 53(2), 671-681. https://doi.org/10.1021/acs.est.8b05535.
Ryu, Y., Kang, M., & Kim, J. (2020). FLUXNET-CH4 KR-CRK Cheorwon Rice paddy. Republic of Korea. https://doi.org/10.18140/FLX/1669649.
Sachs, T., Wille, C., Boike, J., & Kutzbach, L. (2008). Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta. Siberia. Journal of Geophysical Research: Biogeosciences, 113(G3). https://doi.org/10.1029/2007JG000505.
Sachs, T., & Wille, C. (2020). FLUXNET-CH4 DE-Zrk Zarnekow. Germany. https://doi.org/10.18140/FLX/1669636.
Sakabe, A., Itoh, M., Hirano, T., & Kusin, K. (2020). FLUXNET-CH4 ID-Pag Palangkaraya undrained forest. Indonesia. https://doi.org/10.18140/FLX/1669643.
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., … Zhuang, Q. (2020). The global methane budget 2000-2017. Earth System Science Data, 12(3), 1561-1623. https://doi.org/10.5194/essd-12-1561-2020.
Savi, F., Di Bene, C., Canfora, L., Mondini, C., & Fares, S. (2016). Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest. Agricultural and Forest Meteorology, 226-227, 67-79. https://doi.org/10.1016/j.agrformet.2016.05.014.
Schäfer, K. V. R., Tripathee, R., Artigas, F., Morin, T. H., & Bohrer, G. (2014). Carbon dioxide fluxes of an urban tidal marsh in the Hudson-Raritan estuary. Journal of Geophysical Research: Biogeosciences, 119(11), 2065-2081. https://doi.org/10.1002/2014jg002703.
Schaller, C., Kittler, F., Foken, T., & Göckede, M. (2019). Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem. Atmospheric Chemistry and Physics, 19(6), 4041-4059. https://doi.org/10.5194/acp-19-4041-2019.
Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461-464. https://doi.org/10.1103/PhysRevLett.85.461.
Seyfferth, A. L., Bothfeld, F., Vargas, R., Stuckey, J. W., Wang, J., Kearns, K., Michael, H. A., Guimond, J., Yu, X., & Sparks, D. L. (2020). Spatial and temporal heterogeneity of geochemical controls on carbon cycling in a tidal salt marsh. Geochimica et Cosmochimica Acta, 282, 1-18. https://doi.org/10.1016/j.gca.2020.05.013.
Sharma, A., & Mehrotra, R. (2014). An information theoretic alternative to model a natural system using observational information alone. Water Resources Research, 50(1), 650-660. https://doi.org/10.1002/2013wr013845.
Song, C., Sun, L., Huang, Y., Wang, Y., & Wan, Z. (2011). Carbon exchange in a freshwater marsh in the Sanjiang Plain, northeastern China. Agricultural and Forest Meteorology, 151(8), 1131-1138. https://doi.org/10.1016/j.agrformet.2011.04.001.
Sonnentag, O., & Helbig, M. (2020). FLUXNET-CH4 CA-SCB scotty creek bog. Canada. https://doi.org/10.18140/FLX/1669613.
Sparks, J. P. (2020). FLUXNET-CH4 US-MAC MacArthur agro-ecology. United States. https://doi.org/10.18140/FLX/1669683.
Strachan, I. B., Nugent, K. A., Crombie, S., & Bonneville, M.-C. (2015). Carbon dioxide and methane exchange at a cool-temperate freshwater marsh. Environmental Research Letters, 10(6), 065006. https://doi.org/10.1088/1748-9326/10/6/065006.
Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9, 307. https://doi.org/10.1186/1471-2105-9-307.
Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources, and a solution. BMC Bioinformatics, 8, 25. https://doi.org/10.1186/1471-2105-8-25.
Sturtevant, C., Ruddell, B. L., Knox, S. H., Verfaillie, J., Matthes, J. H., Oikawa, P. Y., & Baldocchi, D. (2016). Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange. Journal of Geophysical Research: Biogeosciences, 121(1), 188-204. https://doi.org/10.1002/2015JG003054.
Tittel, J., Hüls, M., & Koschorreck, M. (2019). Terrestrial vegetation drives methane production in the sediments of two German reservoirs. Scientific Reports, 9(1), 15944. https://doi.org/10.1038/s41598-019-52288-1.
Tokida, T. (2005). Ebullition of methane from peat with falling atmospheric pressure. Geophysical Research Letters, 32(13), 3257. https://doi.org/10.1029/2005GL022949.
Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., & Hatano, R. (2007). Falling atmospheric pressure as a trigger for methane ebullition from peatland. Global Biogeochemical Cycles, 21(2). https://doi.org/10.1029/2006GB002790.
Treat, C. C., Anthony Bloom, A., & Marushchak, M. E. (2018). Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems. Global Change Biology, 24(8), 3331-3343. https://doi.org/10.1111/gcb.14137.
Trifunovic, B., Vázquez-Lule, A., Capooci, M., Seyfferth, A. L., Moffat, C., & Vargas, R. (2020). Carbon dioxide and methane emissions from temperate salt marsh tidal creek. Journal of Geophysical Research: Biogeosciences, 125(8), 84. https://doi.org/10.1029/2019JG005558.
Tuovinen, J.-P., Aurela, M., Hatakka, J., Räsänen, A., Virtanen, T., Mikola, J., Ivakhov, V., Kondratyev, V., & Laurila, T. (2019). Interpreting eddy covariance data from heterogeneous Siberian tundra: Land cover-specific methane fluxes and spatial representativeness. Biogeosciences, 16, 255-274. https://doi.org/10.5194/bg-16-255-2019.
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E.-S., Waddington, J. M., White, J. R., Wickland, K. P., & Wilmking, M. (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20(7), 2183-2197. https://doi.org/10.1111/gcb.12580.
Ueyama, M., Hirano, T., & Kominami, Y. (2020). FLUXNET-CH4 JP-BBY Bibai bog. Japan. https://doi.org/10.18140/FLX/1669646.
Ueyama, M., Yazaki, T., Hirano, T., Futakuchi, Y., & Okamura, M. (2020). Environmental controls on methane fluxes in a cool temperate bog. Agricultural and Forest Meteorology, 281, 107852. https://doi.org/10.1016/j.agrformet.2019.107852.
Updegraff, K., Bridgham, S. D., Pastor, J., Weishampel, P., & Harth, C. (2001). Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecological Applications, 11(2), 311. https://doi.org/10.2307/3060891.
Valach, A., Szutu, D., Eichelmann, E., Knox, S., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH4 US-Tw1 twitchell wetland west pond. United States. https://doi.org/10.18140/FLX/1669696.
Van der Nat, F.-J., & Middelburg, J. J. (2000). Methane emission from tidal freshwater marshes. Biogeochemistry, 49(2), 103-121. https://doi.org/10.1023/A:1006333225100.
Vesala, T., Tuittila, E.-S., Mammarella, I., & Alekseychik, P. (2020). FLUXNET-CH4 FI-Si2 Siikaneva-2 Bog. Finland. https://doi.org/10.18140/FLX/1669639.
Vesala, T., Tuittila, E.-S., Mammarella, I., & Rinne, J. (2020). FLUXNET-CH4 FI-Sii Siikaneva. Finland. https://doi.org/10.18140/FLX/1669640.
Villa, J. A., Ju, Y., Stephen, T., Rey-Sanchez, C., Wrighton, K. C., & Bohrer, G. (2020). Plant-mediated methane transport in emergent and floating-leaved species of a temperate freshwater mineral-soil wetland. Limnology and Oceanography, 65(7), 1635-1650. https://doi.org/10.1002/lno.11467.
Villa, J. A., Ju, Y., Yazbeck, T., Waldo, S., Wrighton, K. C., & Bohrer, G. (2021). Ebullition dominates methane fluxes from the water surface across different ecohydrological patches in a temperate freshwater marsh at the end of the growing season. Science of the Total Environment, 767, 144498. https://doi.org/10.1016/j.scitotenv.2020.144498.
Vourlitis, G., Dalmagro, H., Nogueira, J. S., Johnson, M., & Arruda, P. (2020). FLUXNET-CH4 BR-Npw northern pantanal wetland. Brazil. https://doi.org/10.18140/FLX/1669368.
Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., & Venables, B. (2019). gplots: Various R programming tools for plotting data. https://cran.r-project.org/web/packages/gplots/index.html.
Wen, X., Unger, V., Jurasinski, G., Koebsch, F., Horn, F., Rehder, G., Sachs, T., Zak, D., Lischeid, G., Knorr, K.-H., Böttcher, M. E., Winkel, M., Bodelier, P. L. E., & Liebner, S. (2018). Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions. Biogeosciences, 15(21), 6519-6536. https://doi.org/10.5194/bg-15-6519-2018.
Wong, G. X., Melling, L., Tang, A. C. I., Aeries, E. B., Waili, J. W., Musin, K. K., Lo, K. S., & Kiew, F. (2020). FLUXNET-CH4 MY-MLM Maludam National Park. Malaysia. https://doi.org/10.18140/FLX/1669650.
Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), 3-36. https://doi.org/10.1111/j.1467-9868.2010.00749.x.
Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), 1-17. https://doi.org/10.18637/jss.v077.i01.
Yang, W. H., McNicol, G., Teh, Y. A., Estera-Molina, K., Wood, T. E., & Silver, W. L. (2017). Evaluating the classical versus an emerging conceptual model of peatland methane dynamics. Global Biogeochemical Cycles, 31(9), 1435-1453. https://doi.org/10.1002/2017GB005622.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., & del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488-491. https://doi.org/10.1038/nature13164.
Zhao, J., Zhou, Y., Zhang, X., & Chen, L. (2016). Part mutual information for quantifying direct associations in networks. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 5130-5135. https://doi.org/10.1073/pnas.1522586113.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E., Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R.-W., Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A., & Oechel, W. C. (2016). Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the National Academy of Sciences of the United States of America, 113(1), 40-45. https://doi.org/10.1073/pnas.1516017113.
معلومات مُعتمدة: United States NASA NASA
فهرسة مساهمة: Keywords: eddy covariance; generalized additive modeling; lags; methane; mutual information; predictors; random forest; synthesis; time scales; wetlands
المشرفين على المادة: 142M471B3J (Carbon Dioxide)
OP0UW79H66 (Methane)
تواريخ الأحداث: Date Created: 20210429 Date Completed: 20210806 Latest Revision: 20210806
رمز التحديث: 20231215
DOI: 10.1111/gcb.15661
PMID: 33914985
قاعدة البيانات: MEDLINE