دورية أكاديمية

Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins.

التفاصيل البيبلوغرافية
العنوان: Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins.
المؤلفون: Hiatt J; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA., Cavero DA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA., McGregor MJ; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA., Zheng W; Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA., Budzik JM; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA., Roth TL; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA., Haas KM; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA., Wu D; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA., Rathore U; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA., Meyer-Franke A; J. David Gladstone Institutes, San Francisco, CA 94158, USA., Bouzidi MS; Vitalant Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA., Shifrut E; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA., Lee Y; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA., Kumar VE; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA., Dang EV; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA., Gordon DE; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA., Wojcechowskyj JA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA., Hultquist JF; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA., Fontaine KA; J. David Gladstone Institutes, San Francisco, CA 94158, USA., Pillai SK; Vitalant Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA., Cox JS; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA., Ernst JD; Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA., Krogan NJ; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address: nevan.krogan@ucsf.edu., Marson A; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA. Electronic address: alexander.marson@ucsf.edu.
المصدر: Cell reports [Cell Rep] 2021 May 11; Vol. 35 (6), pp. 109105.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Cell Press Country of Publication: United States NLM ID: 101573691 Publication Model: Print Cited Medium: Internet ISSN: 2211-1247 (Electronic) NLM ISO Abbreviation: Cell Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Cambridge, MA] : Cell Press, c 2012-
مواضيع طبية MeSH: CRISPR-Cas Systems/*genetics , Genome/*genetics , Myeloid Cells/*metabolism , Ribonucleoproteins/*metabolism, Animals ; Humans ; Mice
مستخلص: Genome engineering of primary human cells with CRISPR-Cas9 has revolutionized experimental and therapeutic approaches to cell biology, but human myeloid-lineage cells have remained largely genetically intractable. We present a method for the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) complexes by nucleofection directly into CD14 + human monocytes purified from peripheral blood, leading to high rates of precise gene knockout. These cells can be efficiently differentiated into monocyte-derived macrophages or dendritic cells. This process yields genetically edited cells that retain transcript and protein markers of myeloid differentiation and phagocytic function. Genetic ablation of the restriction factor SAMHD1 increased HIV-1 infection >50-fold, demonstrating the power of this system for genotype-phenotype interrogation. This fast, flexible, and scalable platform can be used for genetic studies of human myeloid cells in immune signaling, inflammation, cancer immunology, host-pathogen interactions, and beyond, and could facilitate the development of myeloid cellular therapies.
Competing Interests: Declaration of interests The authors declare competing interests: T.L.R. is a co-founder of Arsenal Biosciences. A.M. is a compensated co-founder, member of the boards of directors, and a member of the scientific advisory boards of Spotlight Therapeutics and Arsenal Biosciences. A.M. was a compensated member of the scientific advisory board at PACT Pharma and was a compensated advisor to Juno Therapeutics and Trizell. A.M. owns stock in Arsenal Biosciences, Spotlight Therapeutics, and PACT Pharma. A.M. has received honoraria from Merck and Vertex, a consulting fee from AlphaSights, and is an investor in and informal advisor to Offline Ventures. The Marson lab has received research support from Juno Therapeutics, Epinomics, Sanofi, GlaxoSmithKline, Gilead, and Anthem. A.M., T.L.R., and E.S. are holders of patents pertaining to, but not resulting from, this work. The Krogan laboratory has received research support from Vir Biotechnology and F. Hoffmann-La Roche.
(Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
References: Nat Genet. 2018 Dec;50(12):1716-1727. (PMID: 30397336)
Cell Death Differ. 2019 Mar;26(4):715-727. (PMID: 30737475)
Cancer Res. 1982 Apr;42(4):1530-6. (PMID: 6949641)
Mol Ther Nucleic Acids. 2015 Dec 15;4:e268. (PMID: 26670276)
Front Oncol. 2020 Jan 22;9:1380. (PMID: 32038992)
Cell. 1997 Oct 31;91(3):295-8. (PMID: 9363937)
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10437-42. (PMID: 26216948)
J Leukoc Biol. 2007 Sep;82(3):710-20. (PMID: 17595377)
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. (PMID: 16199517)
Nature. 2011 May 25;474(7353):654-7. (PMID: 21613998)
Transfusion. 2019 Apr;59(4):1389-1399. (PMID: 30600536)
Nature. 2017 May 25;545(7655):432-438. (PMID: 28514439)
Nat Rev Cancer. 2016 Jul;16(7):447-62. (PMID: 27339708)
J Vis Exp. 2016 Oct 18;(116):. (PMID: 27805582)
Retrovirology. 2007 Jan 09;4:2. (PMID: 17212817)
Nucleic Acids Res. 2014 Dec 16;42(22):e168. (PMID: 25300484)
Semin Immunol. 2015 Dec;27(6):353-6. (PMID: 27038773)
Nat Immunol. 2018 Jan;19(1):76-84. (PMID: 29180808)
Retrovirology. 2011 Jul 08;8:55. (PMID: 21740548)
Cell Rep. 2018 Apr 10;23(2):596-607. (PMID: 29642015)
Clin Exp Immunol. 2013 Feb;171(2):147-54. (PMID: 23286941)
Gene Ther. 2015 Mar;22(3):227-36. (PMID: 25567537)
Mol Ther. 2018 Feb 7;26(2):456-467. (PMID: 29273498)
Nat Biotechnol. 2020 Jan;38(1):44-49. (PMID: 31819258)
Cell. 2018 Dec 13;175(7):1958-1971.e15. (PMID: 30449619)
Int J Cancer. 1980 Aug;26(2):171-6. (PMID: 6970727)
Nat Rev Immunol. 2018 Nov;18(11):689-702. (PMID: 30127389)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
Cell Stem Cell. 2020 Nov 5;27(5):705-731. (PMID: 33157047)
Nat Protoc. 2019 Jan;14(1):1-27. (PMID: 30559373)
J Vis Exp. 2016 Jun 30;(112):. (PMID: 27404952)
Cell Syst. 2015 Dec 23;1(6):417-425. (PMID: 26771021)
Nat Biotechnol. 2016 Jun 9;34(6):621-3. (PMID: 27281421)
Stem Cells. 2017 Apr;35(4):898-908. (PMID: 28090699)
Cell Host Microbe. 2016 Jan 13;19(1):44-54. (PMID: 26764596)
J Immunol. 2007 Aug 15;179(4):2509-19. (PMID: 17675513)
Nature. 2018 Jul;559(7714):405-409. (PMID: 29995861)
Atherosclerosis. 2012 Mar;221(1):2-11. (PMID: 21978918)
Nat Rev Immunol. 2017 Jan;17(1):30-48. (PMID: 27890914)
Nat Med. 2019 May;25(5):776-783. (PMID: 30911135)
Nature. 2011 Jun 29;474(7353):658-61. (PMID: 21720370)
Nat Rev Immunol. 2018 Nov;18(11):716-725. (PMID: 30140052)
Nature. 2013 Apr 25;496(7446):445-55. (PMID: 23619691)
Annu Rev Immunol. 2019 Apr 26;37:571-597. (PMID: 30698999)
Annu Rev Immunol. 2009;27:669-92. (PMID: 19132917)
J Virol. 2011 Jul;85(13):6263-74. (PMID: 21507971)
Science. 2020 Feb 28;367(6481):. (PMID: 32029687)
N Engl J Med. 2000 Aug 3;343(5):338-44. (PMID: 10922424)
Science. 2020 Dec 4;370(6521):. (PMID: 33060197)
Cell Host Microbe. 2015 Jun 10;17(6):811-819. (PMID: 26048136)
معلومات مُعتمدة: T32 AI060537 United States AI NIAID NIH HHS; T32 AI007334 United States AI NIAID NIH HHS; T32 GM007618 United States GM NIGMS NIH HHS; U19 AI135990 United States AI NIAID NIH HHS; R01 AI150449 United States AI NIAID NIH HHS; U54 CA209891 United States CA NCI NIH HHS; P01 AI063302 United States AI NIAID NIH HHS; R01 AI124471 United States AI NIAID NIH HHS; P50 AI150476 United States AI NIAID NIH HHS; S10 OD010786 United States OD NIH HHS
فهرسة مساهمة: Keywords: CRISPR; Cas9; dendritic cells; electroporation; host-pathogen interactions; knockout; macrophages; monocytes; myeloid cells; ribonculeoproteins (RNPs)
المشرفين على المادة: 0 (Ribonucleoproteins)
تواريخ الأحداث: Date Created: 20210512 Date Completed: 20220209 Latest Revision: 20220321
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8188731
DOI: 10.1016/j.celrep.2021.109105
PMID: 33979618
قاعدة البيانات: MEDLINE