دورية أكاديمية

A map of transcriptional heterogeneity and regulatory variation in human microglia.

التفاصيل البيبلوغرافية
العنوان: A map of transcriptional heterogeneity and regulatory variation in human microglia.
المؤلفون: Young AMH; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Kumasaka N; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Calvert F; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Hammond TR; FM Kirby Neurobiology Center, Boston Children's Hospital Harvard University, Boston, MA, USA.; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Boston, MA, USA., Knights A; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Panousis N; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Park JS; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Schwartzentruber J; EMBL-EBI, Wellcome Genome Campus, Hinxton, UK., Liu J; Biogen, Cambridge, MA, USA., Kundu K; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Segel M; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK., Murphy NA; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK., McMurran CE; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK., Bulstrode H; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Correia J; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Budohoski KP; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Joannides A; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Guilfoyle MR; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Trivedi R; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Kirollos R; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Morris R; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Garnett MR; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Timofeev I; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Jalloh I; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Holland K; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Mannion R; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Mair R; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Watts C; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK.; Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, Birmingham, UK., Price SJ; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Kirkpatrick PJ; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Santarius T; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Mountjoy E; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.; Open Targets, Wellcome Genome Campus, Hinxton, UK., Ghoussaini M; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.; Open Targets, Wellcome Genome Campus, Hinxton, UK., Soranzo N; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Bayraktar OA; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK., Stevens B; FM Kirby Neurobiology Center, Boston Children's Hospital Harvard University, Boston, MA, USA.; Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, Boston, MA, USA., Hutchinson PJ; Division of Neurosurgery, Department of Clinical Neurosciences, Cambridge University Hospitals, Cambridge, UK., Franklin RJM; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. rjf1000@cam.ac.uk., Gaffney DJ; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK. dg13@sanger.ac.uk.
المصدر: Nature genetics [Nat Genet] 2021 Jun; Vol. 53 (6), pp. 861-868. Date of Electronic Publication: 2021 Jun 03.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Co Country of Publication: United States NLM ID: 9216904 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1718 (Electronic) Linking ISSN: 10614036 NLM ISO Abbreviation: Nat Genet Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Co., c1992-
مواضيع طبية MeSH: Gene Expression Regulation* , Transcription, Genetic*, Microglia/*metabolism, Alzheimer Disease/genetics ; Humans ; Models, Genetic ; Quantitative Trait Loci/genetics ; Sequence Analysis, RNA ; Single-Cell Analysis
مستخلص: Microglia, the tissue-resident macrophages of the central nervous system (CNS), play critical roles in immune defense, development and homeostasis. However, isolating microglia from humans in large numbers is challenging. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery. Using single-cell and bulk RNA sequencing, we identify how age, sex and clinical pathology influence microglia gene expression and which genetic variants have microglia-specific functions using expression quantitative trait loci (eQTL) mapping. We follow up one of our findings using a human induced pluripotent stem cell-based macrophage model to fine-map a candidate causal variant for Alzheimer's disease at the BIN1 locus. Our study provides a population-scale transcriptional map of a critically important cell for human CNS development and disease.
التعليقات: Comment in: Nat Genet. 2021 Jun;53(6):766-767. (PMID: 34083790)
References: Schafer, D. P. & Stevens, B. Microglia function in central nervous system development and plasticity. Cold Spring Harb. Perspect. Biol. 7, a020545 (2015). (PMID: 26187728458806310.1101/cshperspect.a020545)
Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018). (PMID: 2915159010.1038/nri.2017.125)
Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017). (PMID: 2888600710.1038/nm.4397)
Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013). (PMID: 2315093410.1056/NEJMoa1211851)
Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013). (PMID: 2315090810.1056/NEJMoa1211103)
Tansey, K. E., Cameron, D. & Hill, M. J. Genetic risk for Alzheimer’s disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Med. 10, 14 (2018). (PMID: 29482603582824510.1186/s13073-018-0523-8)
Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369 (2015). (PMID: 25693568453058310.1038/nature14252)
Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 (2018). (PMID: 29416036580326910.1038/s41467-018-02926-5)
Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017). (PMID: 2860235110.1016/j.cell.2017.05.018)
Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019). (PMID: 3047192610.1016/j.immuni.2018.11.004)
Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019). (PMID: 3076092910.1038/s41586-019-0924-x)
Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e6 (2018). (PMID: 2942670210.1016/j.immuni.2018.01.011)
Mathys, H. et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 21, 366–380 (2017). (PMID: 29020624564210710.1016/j.celrep.2017.09.039)
Kilpinen, H. et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546, 370–375 (2017). (PMID: 28489815552417110.1038/nature22403)
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014). (PMID: 2438514710.1038/nprot.2014.006)
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016). (PMID: 2668783810.1016/j.neuron.2015.11.013)
Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017). (PMID: 28546318585858510.1126/science.aal3222)
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 28091601524181810.1038/ncomms14049)
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017). (PMID: 28846088562313910.1038/nmeth.4407)
Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019). (PMID: 31042697686582210.1038/s41586-019-1195-2)
Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019). (PMID: 3174081410.1038/s41593-019-0532-y)
Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206–213 (2016). (PMID: 2665684510.1038/ng.3467)
Jansen, I. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019). (PMID: 30617256683667510.1038/s41588-018-0311-9)
Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019). (PMID: 30820047646329710.1038/s41588-019-0358-2)
Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013). (PMID: 24162737389625910.1038/ng.2802)
Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018). (PMID: 29777097595989010.1038/s41398-018-0150-6)
Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021). (PMID: 33589840761038610.1038/s41588-020-00776-w)
Raj, T. et al. CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum. Mol. Genet. 23, 2729–2736 (2014). (PMID: 2438130510.1093/hmg/ddt666)
Alasoo, K. et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat. Genet. 50, 424–431 (2018). (PMID: 29379200654855910.1038/s41588-018-0046-7)
Barbosa, A. C. et al. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc. Natl Acad. Sci. USA 105, 9391–9396 (2008). (PMID: 18599438245372310.1073/pnas.0802679105)
Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019). (PMID: 31727856702821310.1126/science.aay0793)
Vela, J. M., Yáñez, A., González, B. & Castellano, B. Time course of proliferation and elimination of microglia/macrophages in different neurodegenerative conditions. J. Neurotrauma 19, 1503–1520 (2002). (PMID: 1249001410.1089/089771502320914723)
Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293.e9 (2017). (PMID: 28426964548241910.1016/j.neuron.2017.03.042)
Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016). (PMID: 27089181488415210.1038/ng.3552)
Luciano, M. et al. Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat. Genet. 50, 6–11 (2018). (PMID: 2925526110.1038/s41588-017-0013-8)
Alasoo, K. et al. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci. Rep. 5, 12524 (2015). (PMID: 26224331451977810.1038/srep12524)
Douvaras, P. et al. Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Rep. 8, 1516–1524 (2017). (PMID: 10.1016/j.stemcr.2017.04.023)
Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016). (PMID: 27668937510115610.1038/nm.4189)
Zhang, H. et al. Functional analysis and transcriptomic profiling of iPSC-derived macrophages and their application in modeling Mendelian disease. Circ. Res. 117, 17–28 (2015). (PMID: 25904599456550310.1161/CIRCRESAHA.117.305860)
Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414.e24 (2016). (PMID: 27863251511995410.1016/j.cell.2016.10.026)
Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 182 (2014). (PMID: 10.1186/1471-2105-15-182)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
Kumasaka, N., Knights, A. J. & Gaffney, D. J. High-resolution genetic mapping of putative causal interactions between regions of open chromatin. Nat. Genet. 51, 128–137 (2019). (PMID: 3047843610.1038/s41588-018-0278-6)
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018). (PMID: 2922747010.1038/nbt.4042)
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). (PMID: 31740819688469310.1038/s41592-019-0619-0)
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). (PMID: 29608179670074410.1038/nbt.4096)
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. https://doi.org/10.1038/nbt.4091 (2018).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014). (PMID: 24830394402249110.1371/journal.pgen.1004383)
Veyrieras, J.-B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4, e1000214 (2008). (PMID: 18846210255608610.1371/journal.pgen.1000214)
معلومات مُعتمدة: MC_PC_17230 United Kingdom MRC_ Medical Research Council; RRZD/029 United Kingdom WT_ Wellcome Trust; United States HHMI Howard Hughes Medical Institute; 206194 United Kingdom WT_ Wellcome Trust; United Kingdom WT_ Wellcome Trust; 203151 United Kingdom WT_ Wellcome Trust
تواريخ الأحداث: Date Created: 20210604 Date Completed: 20210720 Latest Revision: 20230203
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7610960
DOI: 10.1038/s41588-021-00875-2
PMID: 34083789
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1718
DOI:10.1038/s41588-021-00875-2