دورية أكاديمية

Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils.

التفاصيل البيبلوغرافية
العنوان: Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils.
المؤلفون: Dauer Née Joppe K; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany., Tatenhorst L; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany., Caldi Gomes L; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.; Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany., Zhang S; Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany., Parvaz M; Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany., Carboni E; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany., Roser AE; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany., El DeBakey H; Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany., Bähr M; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen, Germany., Vogel-Mikuš K; Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia.; Jozef Stefan Institute, Ljubljana, Slovenia., Wang Ip C; Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany., Becker S; Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany., Zweckstetter M; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.; Research group Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany., Lingor P; Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.; Department of Neurology, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany.
المصدر: Journal of neurochemistry [J Neurochem] 2021 Nov; Vol. 159 (3), pp. 554-573. Date of Electronic Publication: 2021 Aug 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the International Society for Neurochemistry Country of Publication: England NLM ID: 2985190R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-4159 (Electronic) Linking ISSN: 00223042 NLM ISO Abbreviation: J Neurochem Subsets: MEDLINE
أسماء مطبوعة: Publication: 2001- : Oxford, UK : Wiley on behalf of the International Society for Neurochemistry
Original Publication: New York : Raven Press
مواضيع طبية MeSH: Brain Chemistry*, Iron/*pharmacology , Synucleinopathies/*metabolism , Synucleinopathies/*pathology , alpha-Synuclein/*metabolism , alpha-Synuclein/*toxicity, Animals ; Animals, Newborn ; Connectome ; Corpus Striatum ; Dose-Response Relationship, Drug ; Female ; Humans ; Iron/administration & dosage ; Male ; Memory Disorders/chemically induced ; Memory Disorders/psychology ; Mice, Inbred C57BL ; Microglia/pathology ; Microinjections ; Motor Activity/drug effects ; alpha-Synuclein/administration & dosage ; Mice
مستخلص: Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.
(© 2021 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.)
التعليقات: Comment in: J Neurochem. 2021 Nov;159(3):414-416. (PMID: 34296424)
References: Adolfsson, R., Gottfries, C. G., Roos, B. E., & Winblad, B. (1979). Post-mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. Journal of Neural Transmission, 45, 81-105. https://doi.org/10.1007/BF01250085.
Akirav, I., & Maroun, M. (2006). Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cerebral Cortex, 16, 1759-1765. https://doi.org/10.1093/cercor/bhj114.
Baksi, S., Tripathi, A. K., & Singh, N. (2016). Alpha-synuclein modulates retinal iron homeostasis by facilitating the uptake of transferrin-bound iron: Implications for visual manifestations of Parkinson’s disease. Free Radical Biology and Medicine, 97, 292-306. https://doi.org/10.1016/j.freeradbiomed.2016.06.025.
Balderas, I., Rodriguez-Ortiz, C. J., Salgado-Tonda, P., Chavez-Hurtado, J., McGaugh, J. L., & Bermudez-Rattoni, F. (2008). The consolidation of object and context recognition memory involve different regions of the temporal lobe. Cold Spring Harbor Laboratory Press, 15, 618-624. https://doi.org/10.1101/lm.1028008.
Berg, D., Marek, K., Ross, G. W., & Poewe, W. (2012). Defining at-risk populations for Parkinson’s disease: Lessons from ongoing studies. Movement Disorders, 27, 656-665. https://doi.org/10.1002/mds.24985.
Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang, C., Koethe, U., Hamprecht, F. A., & Kreshuk, A. (2019). ilastik: Interactive machine learning for (bio)image analysis. Nature Methods, 16, 1226-1232. https://doi.org/10.1038/s41592-019-0582-9.
Bermudez-Rattoni, F., Okuda, S., Roozendaal, B., & McGaugh, J. L. (2005). Insular cortex is involved in consolidation of object recognition memory. Learning and Memory, 12, 447-449. https://doi.org/10.1101/lm.97605.
Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study “recognition memory”. Nature Protocols, 1, 1306. https://doi.org/10.1038/nprot.2006.205.
Billings, J. L., Gordon, S. L., Rawling, T., Doble, P. A., Bush, A. I., Adlard, P. A., Finkelstein, D. I., & Hare, D. J. (2019). l-3,4-dihydroxyphenylalanine (l-DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha-synuclein mouse models of Parkinson’s disease. Journal of Neurochemistry, 150, 88-106.
Billings, J. L., Hare, D. J., Nurjono, M., Volitakis, I., Cherny, R. A., Bush, A. I., Adlard, P. A., & Finkelstein, D. I. (2016). Effects of neonatal iron feeding and chronic clioquinol administration on the parkinsonian human A53T transgenic mouse. ACS Chemical Neuroscience, 7, 360-366. https://doi.org/10.1021/acschemneuro.5b00305.
Binolfi, A., Rasia, R. M., Bertoncini, C. W., Ceolin, M., Zweckstetter, M., Griesinger, C., Jovin, T. M., & Fernández, C. O. (2006). Interaction of α-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement. Journal of the American Chemical Society, 128, 9893-9901. https://doi.org/10.1021/ja0618649.
Blumenstock, S., Rodrigues, E. F., Peters, F., Blazquez-Llorca, L., Schmidt, F., Giese, A., & Herms, J. (2017). Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex. EMBO Molecular Medicine, 9, 716-731. https://doi.org/10.15252/emmm.201607305.
Braak, H., Tredici, K., Del, R. U., de Vos, R. A. I., Jansen, S. E., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197-211. https://doi.org/10.1016/S0197-4580(02)00065-9.
Brochard, V., Combadière, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J.-M., Duyckaerts, C., Flavell, R. A., Hirsch ,E. C., & Hunot, S. (2008). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. Journal of Clinical Investigation, 119, 182-192. https://doi.org/10.1172/jci36470.
Burke, R. E., & O´Malley, K. (2014). Axon degeneration in Parkinson’s disease. Experimental Neurology, 246, 72-83.
Cabantchik, Z. I., Munnich, A., Youdim, M. B., & Devos, D. (2013). Regional siderosis: a new challenge for iron chelation therapy. Frontiers in Pharmacology, 4, 1-7. https://doi.org/10.3389/fphar.2013.00167.
Carboni, E., Tatenhorst, L., Tönges, L., Barski, E., Dambeck, V., Bähr, M., & Lingor, P. (2017). Deferiprone rescues behavioral deficits induced by mild iron exposure in a mouse model of alpha-synuclein aggregation. NeuroMolecular Medicine, 19, 309-321. https://doi.org/10.1007/s12017-017-8447-9.
Chen, H., Wang, X., Wang, M., Yang, L., Yan, Z., Zhang, Y., & Liu, Z. (2015). Behavioral and neurochemical deficits in aging rats with increased neonatal iron intake: Silibinin’s neuroprotection by maintaining redox balance. Frontiers in Aging Neuroscience, 7, 206. https://doi.org/10.3389/fnagi.2015.00206.
Chen, L., Periquet, M., Wang, X., Negro, A., McLean, P. J., Hyman, B. T., & Feany, M. B. (2009). Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. Journal of Clinical Investigation, 119, 3257-3265. https://doi.org/10.1172/JCI39088.
Choi, Y. R., Kang, S. J., Kim, J. M., Lee, S. J., Jou, I., Joe, E. H., & Park, S. M. (2015). FcγRIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis. Neurobiology of Disease, 83, 90-99. https://doi.org/10.1016/j.nbd.2015.08.025.
Chung, H. K., Ho, H.-A., Pérez-Acuña, D., & Lee, S.-J. (2019). Modeling α-synuclein propagation with preformed fibril injections. Journal of Movement Disorders, 12, 139-151. https://doi.org/10.14802/jmd.19046.
Clarke, J. R., Cammarota, M., Gruart, A., Izquierdo, I., & Delgado-García, J. M. (2010). Plastic modifications induced by object recognition memory processing. Proceedings of the National Academy of Sciences of the United States of America, 107, 2652-2657. https://doi.org/10.1073/pnas.0915059107.
ClinicalTrials.gov. National Library of Medicine (U.S.) (2015) Conservative Iron Chelation as a Disease-modifying Strategy in Parkinson’s Disease (FAIRPARKII). European Multicentre, Parallel-group, Placebo-controlled, Randomized Clinical Trial of Deferiprone. (Identifier: NCT02655315).
Dai, M., Zhong, Z., Sun, Y., Sun, Q., Wang, Y., Yang, G., & Bian, L. (2013). Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neuroscience Letters, 536, 41-46. https://doi.org/10.1016/j.neulet.2013.01.007.
Davies, P., Moualla, D., & Brown, D. R. (2011). Alpha-synuclein is a cellular ferrireductase. PLoS One, 6, e15814. https://doi.org/10.1371/journal.pone.0015814.
de Lima, M. N. M., Laranja, D. C., Caldana, F., Grazziotin, M. M., Garcia, V. A., Dal-Pizzol, F., Bromberg, E., & Schröder, N. (2005). Selegiline protects against recognition memory impairment induced by neonatal iron treatment. Experimental Neurology, 196, 177-183. https://doi.org/10.1016/j.expneurol.2005.07.017.
de Lima, M. N. M., Polydoro, M., Laranja, D. C., Bonatto, F., Bromberg, E., Moreira, J. C. F., Dal-Pizzol, F., & Schröder, N. (2005). Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. European Journal of Neuroscience, 21, 2521-2528. https://doi.org/10.1111/j.1460-9568.2005.04083.x.
de Lima, M. N. M., Presti-Torres, J., Caldana, F., Grazziotin, M. M., Scalco, F. S., Guimarães, M. R., Bromberg, E., Franke, S. I. R., Henriques, J. A. P., & Schröder, N. (2007). Desferoxamine reverses neonatal iron-induced recognition memory impairment in rats. European Journal of Pharmacology, 570, 111-114. https://doi.org/10.1016/j.ejphar.2007.06.002.
Devos, D., Moreau, C., Devedjian, J. C., Kluza, J., Petrault, M., Laloux, C., Jonneaux, A., Ryckewaert, G., Garçon, G., Rouaix, N., Duhamel, A., Jissendi, P., Dujardin, K., Auger, F., Ravasi, L., Hopes, L., Grolez, G., Firdaus, W., Sablonnière, B., … Bordet, R. (2014). Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxidants & Redox Signaling, 21, 195-210. https://doi.org/10.1089/ars.2013.5593.
Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y., Wells, F. R., Daniel, S. E., Lees, A. J., Jenner, P., & Marsden, C. D. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 114, 1953-1975. https://doi.org/10.1093/brain/114.4.1953.
Duce, J. A., Wong, B. X., Durham, H., Devedjian, J.-C., Smith, D. P., & Devos, D. (2017). Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson’s disease. Molecular Neurodegeneration, 12, 45. https://doi.org/10.1186/s13024-017-0186-8.
Espa, E., Clemensson, E. K. H., Luk, K. C., Heuer, A., Björklund, T., & Cenci, M. A. (2019). Seeding of protein aggregation causes cognitive impairment in rat model of cortical synucleinopathy. Movement Disorders, 34(11), 1-12. https://doi.org/10.1002/mds.27810.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149-1160. https://doi.org/10.3758/BRM.41.4.1149.
Finkelstein, D. I., Hare, D. J., Billings, J. L., Sedjahtera, A., Nurjono, M., Arthofer, E., George, S., Culvenor, J. G., Bush, A. I., & Adlard, P. A. (2016). Clioquinol improves cognitive, motor function, and microanatomy of the alpha-synuclein hA53T transgenic mice. ACS Chem Neurosci, 7, 119-129. https://doi.org/10.1021/acschemneuro.5b00253.
Fredriksson, A., Schröder, N., Eriksson, P., Izquierdo, I., & Archer, T. (2000). Maze learning and motor activity deficits in adult mice induced by iron exposure during a critical postnatal period. Developmental Brain Research, 119, 65-74. https://doi.org/10.1016/S0165-3806(99)00160-1.
Freundt, E. C., Maynard, N., Clancy, E. K., Roy, S., Bousset, L., Sourigues, Y., Covert, M., Melki, R., Kirkegaard, K., & Brahic, M. (2012). Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Annals of Neurology, 72, 517-524. https://doi.org/10.1002/ana.23747.
Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K., & Iwatsubo, T. (2002). α-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160-164. https://doi.org/10.1038/ncb748.
George, S., Rey, N. L., Tyson, T., Esquibel, C., Meyerdirk, L., Schulz, E., Pierce, S., Burmeister, A. R., Madaj, Z., Steiner, J. A., Escobar Galvis, M. L., Brundin, L., & Brundin, P. (2019). Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. Molecular Neurodegeneration, 14, 1-22. https://doi.org/10.1186/s13024-019-0335-3.
Golts, N., Snyder, H., Frasier, M., Theisler, C., Choi, P., & Wolozin, B. (2002). Magnesium inhibits spontaneous and iron-induced aggregation of α-synuclein. Journal of Biological Chemistry, 277, 16116-16123. https://doi.org/10.1074/jbc.M107866200.
González, H., Contreras, F., Prado, C., Elgueta, D., Franz, D., Bernales, S., & Pacheco, R. (2013). Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. The Journal of Immunology, 190, 5048-5056.
Guan, X., Zhang, Y., Wei, H., Guo, T., Zeng, Q., Zhou, C., Wang, J., Gao, T., Xuan, M., Gu, Q., Xu, X., Huang, P., Pu, J., Zhang, B., Liu, C., & Zhang, M. (2019). Iron-related nigral degeneration influences functional topology mediated by striatal dysfunction in Parkinson’s disease. Neurobiology of Aging, 75, 83-97. https://doi.org/10.1016/j.neurobiolaging.2018.11.013.
Guiney, S. J., Adlard, P. A., Lei, P., Mawal, C. H., Bush, A. I., Finkelstein, D. I., & Ayton, S. (2020). Fibrillar α-synuclein toxicity depends on functional lysosomes. Journal of Biological Chemistry, 295, 17497-17513. https://doi.org/10.1074/jbc.RA120.013428.
Harms, A. S., Delic, V., Thome, A. D., Bryant, N., Liu, Z., Chandra, S., Jurkuvenaite, A., & West, A. B. (2017). α-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Acta Neuropathologica Communications, 5, 85. https://doi.org/10.1186/s40478-017-0494-9.
Henderson, M. X., Cornblath, E. J., Darwich, A., Zhang, B., Brown, H., Gathagan, R. J., Sandler, R. M., Bassett, D. S., Trojanowski, J. Q., & Lee, V. M. Y. (2019). Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nature Neuroscience, 22, 1248-1257. https://doi.org/10.1038/s41593-019-0457-5.
Hoyer, W., Antony, T., Cherny, D., Heim, G., Jovin, T. M., & Subramaniam, V. (2002). Dependence of α-synuclein aggregate morphology on solution conditions. Journal of Molecular Biology, 322, 383-393. https://doi.org/10.1016/S0022-2836(02)00775-1.
Hoyer, W., Cherny, D., Subramaniam, V., & Jovin, T. M. (2004). Impact of the acidic C-terminal region comprising amino acids 109-140 on α-synuclein aggregation in vitro. Biochemistry, 43, 16233-16242.
Joppe, K. (2020). Alpha-synuclein spreading pathology in Parkinson's disease: The influence of iron and the Rho-kinase inhibitor fasudil. Germany: of the Georg-August-University Goettingen. Dissertation for the award of the degree “Doctor rerum naturalium”.
Joppe, K., Roser, A.-E., Maass, F., & Lingor, P. (2019). The contribution of iron to protein aggregation disorders in the central nervous system. Frontiers in Neuroscience, 13, 15. https://doi.org/10.3389/fnins.2019.00015.
Karydas, A. G., Czyzycki, M., Leani, J. J., Migliori, A., Osan, J., Bogovac, M., Wrobel, P., Vakula, N., Padilla-Alvarez, R., Menk, R. H., Gol, M. G., Antonelli, M., Tiwari, M. K., Caliri, C., Vogel-Mikuš, K., Darby, I., & Kaiser, R. B. (2018). An IAEA multi-technique X-ray spectrometry endstation at Elettra Sincrotrone Trieste: Benchmarking results and interdisciplinary applications. Journal of Synchrotron Radiation, 25, 189-203. https://doi.org/10.1107/S1600577517016332.
Kim, C., Ho, D.-H., Suk, J.-E., You, S., Michael, S., Kang, J., Joong Lee, S., Masliah, E., Hwang, D., Lee, H.-J., & Lee, S.-J. (2013). Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nature Communications, 4, 1562. https://doi.org/10.1038/ncomms2534.
Kim, C., Lv, G., Lee, J. S., Jung, B. C., Masuda-Suzukake, M., Hong, C.-S., Valera, E., Lee, H.-J., Paik, S. R., Hasegawa, M., Masliah, E., Eliezer, D., & Lee, S.-J. (2016). Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Scientific Reports, 6, 1-12. https://doi.org/10.1038/srep30891.
Kostka, M., Högen, T., Danzer, K. M., Levin, J., Habeck, M., Wirth, A., Wagner, R., Glabe, C. G., Finger, S., Heinzelmann, U., Garidel, P., Duan, W., Ross, C. A., Kretzschmar, H., & Giese, A. (2008). Single particle characterization of iron-induced pore-forming α-synuclein oligomers. Journal of Biological Chemistry, 283, 10992-11003. https://doi.org/10.1074/jbc.M709634200.
Kump, P., & Vogel-Mikuš, K. (2018). Quantification of 2D elemental distribution maps of intermediate-thick biological sections by low energy synchrotron μ-X-ray fluorescence spectrometry. Journal of Instrumentation, 13, C05014. https://doi.org/10.1088/1748-0221/13/05/C05014.
Lee, E.-J., Woo, M.-S., Moon, P.-G., Baek, M.-C., Choi, I.-Y., Kim, W.-K., Junn, E., & Kim, H.-S. (2010). α-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. The Journal of Immunology, 185, 615-623. https://doi.org/10.4049/jimmunol.0903480.
Lee, H. J., Suk, J. E., Bae, E. J., & Lee, S. J. (2008). Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochemical and Biophysical Research Communications, 372, 423-428. https://doi.org/10.1016/j.bbrc.2008.05.045.
Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., Nguyen, H., Brickman, C. M., & LeWitt, P. A. (1995). Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. Journal of Neurochemistry, 65, 710-716. https://doi.org/10.1046/j.1471-4159.1995.65020710.x.
Luk, K. C., Kehm, V., Carroll, J., Zhang, B., Brien, P. O., Trojanowski, J. Q., & Lee, V. M. (2012). Pathological a-synuclein transmission initiates parkinson-like neurodegeneration in nontransgenic mice. Science, 338, 949-954.
Luk, K. C., Kehm, V. M., Zhang, B., O’Brien, P., Trojanowski, J. Q., & Lee, V. M. Y. (2012). Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. Journal of Experimental Medicine, 209, 975-986. https://doi.org/10.1084/jem.20112457.
Martin-Bastida, A., Ward, R. J., Newbould, R., Piccini, P., Sharp, D., Kabba, C., Patel, M. C., Spino, M., Connelly, J., Tricta, F., Crichton, R. R., & Dexter, D. T. (2017). Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Scientific Reports, 7, 1398. https://doi.org/10.1038/s41598-017-01402-2.
Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Kubo, M., Shimozawa, A., Akiyama, H., & Hasegawa, M. (2014). Pathological alpha-synuclein propagates through neural networks. Acta Neuropathologica Communications, 2, 88. https://doi.org/10.1186/s40478-014-0088-8.
Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Oikawa, T., Arai, T., Akiyama, H., Mann, D. M. A., & Hasegawa, M. (2013). Prion-like spreading of pathological α-synuclein in brain. Brain, 136, 1128-1138. https://doi.org/10.1093/brain/awt037.
McCarthy, R. C., & Kosman, D. J. (2008). Iron transport across the blood-brain barrier; Development, neurovascular regulation and cerebral amyloid angiopathy. Bone, 72, 709-727.
Milanese, C., Cerri, S., Ulusoy, A., Gornati, S. V., Plat, A., Gabriels, S., Blandini, F., Di Monte, D. A., Hoeijmakers, J. H., & Mastroberardino, P. G. (2018). Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson’s disease. Cell Death & Disease, 9, 818. https://doi.org/10.1038/s41419-018-0848-7.
Moreau, C., Danel, V., Devedjian, J. C., Grolez, G., Timmerman, K., Laloux, C., Petrault, M., Moreau, C., Danel, V., Devedjian, J. C., Grolez, G., Timmerman, K., Laloux, C., Petrault, M., Gouel, F., Jonneaux, A., Dutheil, M., Lachaud, C., Lopes, R., … Devos, D. (2018). Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis? Antioxidants & Redox Signaling, 29(8), 742-748. https://doi.org/10.1089/ars.2017.7493.
Oexle, H., Gnaiger, E., & Weiss, G. (1999). Iron-dependent changes in cellular energy metabolism: Influence on citric acid cycle and oxidative phosphorylation. Biochimica Et Biophysica Acta - Bioenergetics, 1413, 99-107. https://doi.org/10.1016/S0005-2728(99)00088-2.
Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A., … Zeng, H. (2014). A mesoscale connectome of the mouse brain. Nature, 508, 207-214. https://doi.org/10.1038/nature13186.
Oliveira, M. A. P., Arreckx, S., Di Monte, D., Preciat, G. A., Ulusoy, A., & Fleming, R. M. T. (2019). The connectome is necessary but not sufficient for the spread of alpha -synuclein pathology in rats. bioRxiv. https://doi.org/10.1101/567222.
Park, J. Y., Paik, S. R., Jou, I., & Park, S. M. (2008). Microglial phagocytosis is enhanced by monomeric α-synuclein, not aggregated α-synuclein: Implications for Parkinson’s disease. Glia, 56, 1215-1223. https://doi.org/10.1002/glia.20691.
Paumier, K. L., Luk, K. C., Manfredsson, F. P., Kanaan, N. M., Lipton, J. W., Collier, T. J., Steece-Collier, K., Kemp, C. J., Celano, S., Schulz, E., Sandoval, I. M., Fleming, S., Dirr, E., Polinski, N. K., Trojanowski, J. Q., Lee, V. M., & Sortwell, C. E. (2015). Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiology of Disease, 82, 185-199. https://doi.org/10.1016/j.nbd.2015.06.003.
Paxinos, G., & Franklin, K. B. J. (2003). The Mouse Brain in Stereotaxic Coordinates. Elsevier Academic Press.
Peelaerts, W., Bousset, L., Van der Perren, A., Moskalyuk, A., Pulizzi, R., Giugliano, M., Van den Haute, C., Melki, R., & Baekelandt, V. (2015). α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature, 522, 340-344. https://doi.org/10.1038/nature14547.
Peng, Y., Wang, C., Xu, H., Liu, Y.-N., & Zhou, F. (2010). Binding of α-synuclein with Fe(III) and with Fe(II) and biological implications of the resultant complexes. Journal of Inorganic Biochemistry, 104, 365-370. https://doi.org/10.1016/j.jinorgbio.2009.11.005.
Rossi, M., Ruottinen, H., Soimakallio, S., Elovaara, I., & Dastidar, P. (2013). Clinical MRI for iron detection in Parkinson’s disease. Clinical Imaging, 37, 631-636. https://doi.org/10.1016/j.clinimag.2013.02.001.
Saal, K. A., Koch, J. C., Tatenhorst, L., Szego, E. M., Ribas, V. T., Michel, U., Bähr, M., Tönges, L., & Lingor, P. (2015). AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson’s disease in vitro and in vivo. Neurobiology of Disease, 73, 150-162. https://doi.org/10.1016/j.nbd.2014.09.013.
Salami, A., Avelar-Pereira, B., Garzón, B., Sitnikov, R., & Kalpouzos, G. (2018). Functional coherence of striatal resting-state networks is modulated by striatal iron content. NeuroImage, 183, 495-503. https://doi.org/10.1016/j.neuroimage.2018.08.036.
Schröder, N., Fredriksson, A., Vianna, M. R. M., Roesler, R., Izquierdo, I., & Archer, T. (2001). Memory deficits in adult rats following postnatal iron administration. Behavioural Brain Research, 124, 77-85. https://doi.org/10.1016/S0166-4328(01)00236-4.
Shimozawa, A., Ono, M., Takahara, D., Tarutani, A., Imura, S., Masuda-Suzukake, M., Higuchi, M., Yanai, K., Hisanaga, S. I., & Hasegawa, M. (2017). Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathologica Communications, 5, 12. https://doi.org/10.1186/s40478-017-0413-0.
Smith, W. W. (2005). Synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. Journal of Neuroscience, 25, 5544-5552. https://doi.org/10.1523/JNEUROSCI.0482-05.2005.
Solé, V. A. A., Papillon, E., Cotte, M., Walter, P. H., & Susini, J. (2007). A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta - Part B Atomic Spectroscopy, 62, 63-68. https://doi.org/10.1016/j.sab.2006.12.002.
Solntseva, E. I., Bukanova, J. V., Kondratenko, R. V., & Skrebitsky, V. G. (2015). Fe2+ and Fe3+ in micromolar concentrations modulate glycine-induced Cl− current in rat hippocampal neurons. Brain Research Bulletin, 115, 9-16. https://doi.org/10.1016/j.brainresbull.2015.04.004.
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’ s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences, 95, 6469-6473. https://doi.org/10.1073/pnas.95.11.6469.
Suzuki, W. A., Miller, E. K., & Desimone, R. (1997). Object and place memory in the macaque entorhinal cortex. Journal of Neurophysiology, 78, 1062-1081. https://doi.org/10.1152/jn.1997.78.2.1062.
Tatenhorst, L., Eckermann, K., Dambeck, V., Fonseca-Ornelas, L., Walle, H., Lopes da Fonseca, T., Koch, J. C., Becker, S., Tönges, L., Bähr, M., Outeiro, T. F., Zweckstetter, M., & Lingor, P. (2016). Fasudil attenuates aggregation of α-synuclein in models of Parkinson’s disease. Acta Neuropathol Commun, 4, 39. https://doi.org/10.1186/s40478-016-0310-y.
Tatenhorst, L., Tönges, L., Saal, K.-A., Koch, J. C., Szegő, E. M., Bähr, M., & Lingor, P. (2014). Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease. Journal of Neuropathology and Experimental Neurology, 73, 770-779. https://doi.org/10.1097/NEN.0000000000000095.
Terada, M., Suzuki, G., Nonaka, T., Kametani, F., Tamaoka, A., & Hasegawa, M. (2018). The effect of truncation on prion-like properties of -synuclein. Journal of Biological Chemistry, 293, 13910-13920.
Tran, H. T., Chung, C.- H.-Y., Iba, M., Zhang, B., Trojanowski, J. Q., Luk, K. C., & Lee, V. M. Y. (2014). α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Reports, 7, 2054-2065. https://doi.org/10.1016/j.celrep.2014.05.033.
Uversky, V. N., Li, J., & Fink, A. L. (2001). Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein: A possible molecular link between Parkinson’s disease and heavy metal exposure. Journal of Biological Chemistry, 276, 44284-44296. https://doi.org/10.1074/jbc.M105343200.
Valdinocci, D., Grant, G. D., Dickson, T. C., & Pountney, D. L. (2018). Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates. Molecular and Cellular Neuroscience, 89, 80-94. https://doi.org/10.1016/j.mcn.2018.04.006.
Vogel-Mikuš, K., Pongrac, P., & Pelicon, P. (2014). Micro-PIXE elemental mapping for ionome studies of crop plants. International Journal of PIXE, 24, 217-233. https://doi.org/10.1142/S0129083514400142.
Volpicelli-Daley, L. A., Luk, K. C., Patel, T. P., Tanik, S. A., Riddle, D. M., Stieber, A., Meaney, D. F., Trojanowski, J. Q., & Lee, V.- M.-Y. (2011). Exogenous α-synuclein fibrils induce lewy body pathology leading to synaptic dysfunction and neuron death. Neuron, 72, 57-71. https://doi.org/10.1016/j.neuron.2011.08.033.
Wang, S., Chu, C.-H., Stewart, T., Ginghina, C., Wang, Y., Nie, H., Guo, M., Wilson, B., Hong, J.-S., & Zhang, J. (2015). α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 112, E1926-E1935.
Winner, B., & Jappelli, R. (2011). In vivo demonstration that α-synuclein oligomers are toxic. Proceedings of the National Academy of Sciences, 108, 4194-4199.
Xia, Y., Zhang, G., Han, C., Ma, K., Guo, X., Wan, F., Kou, L., Yin, S., Liu, L., Huang, J., Xiong, N., & Wang, T. (2019). Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death and Disease, 10, 174. https://doi.org/10.1038/s41419-019-1404-9.
Zhang, B., Kehm, V., Gathagan, R., Leight, S. N., Trojanowski, J. Q., Lee, V.- M.-Y., & Luk, K. C. (2019). Stereotaxic targeting of alpha-synuclein pathology in mouse brain using preformed fibrils. Methods in Molecular Biology, 1948, 45-57. http://doi.org/10.1016/j.jns.2017.08.126.
Zhang, W., Wang, T., Pei, Z., Miller, D. S., Wu, X., Block, M. L., Wilson, B., Zhang, W., Zhou, Y., Hong, J.-S., & Zhang, J. (2005). Aggregated α-synuclein activates microglia: A process leading to disease progression in Parkinson's disease. The FASEB Journal, 19(6), 533-542. http://doi.org/10.1096/fj.04-2751com.
فهرسة مساهمة: Keywords: Parkinson's disease; alpha-synuclein; alpha-synuclein propagation; alpha-synuclein seeding; iron dyshomeostasis
المشرفين على المادة: 0 (alpha-Synuclein)
E1UOL152H7 (Iron)
تواريخ الأحداث: Date Created: 20210627 Date Completed: 20211119 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1111/jnc.15461
PMID: 34176164
قاعدة البيانات: MEDLINE