دورية أكاديمية

CD1a- and CD83-positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients.

التفاصيل البيبلوغرافية
العنوان: CD1a- and CD83-positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients.
المؤلفون: Giorello MB; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina., Matas A; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina., Marenco P; Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina., Davies KM; Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina., Borzone FR; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina., Calcagno ML; Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Junín 954, Ciudad Autónoma de Buenos Aires, CP 1113, Buenos Aires, Argentina., García-Rivello H; Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina., Wernicke A; Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, CP 1181, Buenos Aires, Argentina., Martinez LM; Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA., Labovsky V; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina. 16vivian@gmail.com., Chasseing NA; Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de Biología Y Medicina Experimental, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, CP 1428, Buenos Aires, Argentina. achasseing@ibyme.conicet.gov.ar.
المصدر: Breast cancer (Tokyo, Japan) [Breast Cancer] 2021 Nov; Vol. 28 (6), pp. 1328-1339. Date of Electronic Publication: 2021 Jul 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Maruzen Co Country of Publication: Japan NLM ID: 100888201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1880-4233 (Electronic) Linking ISSN: 13406868 NLM ISO Abbreviation: Breast Cancer Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Tokyo : Maruzen Co.,
مواضيع طبية MeSH: Antigens, CD/*analysis , Antigens, CD1/*analysis , Breast Neoplasms/*pathology , Immunoglobulins/*analysis , Membrane Glycoproteins/*analysis, Adult ; Aged ; Aged, 80 and over ; Antigens, CD/immunology ; Antigens, CD1/immunology ; Biomarkers, Tumor/immunology ; Dendritic Cells/immunology ; Dendritic Cells/pathology ; Female ; Humans ; Immunoglobulins/immunology ; Membrane Glycoproteins/immunology ; Middle Aged ; Retrospective Studies ; Survival Analysis ; CD83 Antigen
مستخلص: Purpose: Dendritic cells (DCs) are the most potent antigen-presenting cells that play a major role in initiating the antitumor immune response in different types of cancer. However, the prognostic significance of the accumulation of these cells in human early breast tumors is not totally clear. The aim of this study is to evaluate the prognostic relevance of CD1a( +) and CD83( +) dendritic cells in early breast cancer patients.
Methods: We conducted immunohistochemical assays to determine the number of stromal CD1a( +) and CD83( +) DCs in primary tumors from early invasive ductal breast cancer patients, and analyzed their association with clinico-pathological characteristics.
Results: Patients with high CD1a( +) DC number had lower risk of bone metastatic occurrence, as well as, longer disease-free survival (DFS), bone metastasis-free survival (BMFS) and overall survival (OS). Moreover, CD1a( +) DC number was an independent prognostic factor for BMFS and OS. In contrast, we found that patients with high number of CD83( +) DCs had lower risk of mix (bone and visceral)-metastatic occurrence. Likewise, these patients presented better prognosis with longer DFS, mix-MFS and OS. Furthermore, CD83( +) DC number was an independent prognostic factor for DFS and OS.
Conclusion: The quantification of the stromal infiltration of DCs expressing CD1a or CD83 in early invasive breast cancer patients serves to indicate the prognostic risk of developing metastasis in a specific site.
(© 2021. The Japanese Breast Cancer Society.)
References: International Agency for Research on Cancer. GLOBOCAN cancer fact sheet 2018. 2018. http://globocan.iarc.fr/factsheet/cancer .
Place AE, Jin Huh S, Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 2011;13:227. https://doi.org/10.1186/bcr2912 . (PMID: 10.1186/bcr2912220780263326543)
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22. https://doi.org/10.1016/j.ccr.2012.02.022 . (PMID: 10.1016/j.ccr.2012.02.022)
Criscitiello C, Esposito A, Curigliano G. Tumor-stroma crosstalk: targeting stroma in breast cancer. Curr Opin Oncol. 2014;26:551–5. https://doi.org/10.1097/CCO.0000000000000122 . (PMID: 10.1097/CCO.000000000000012225279962)
Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012;31:195–208. https://doi.org/10.1007/s10555-011-9340-x . (PMID: 10.1007/s10555-011-9340-x22101652)
Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res Treat. 2020;185:261–79. https://doi.org/10.1007/s10549-020-05954-2 . (PMID: 10.1007/s10549-020-05954-233011829)
Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8. https://doi.org/10.1038/ni1102-991 . (PMID: 10.1038/ni1102-99112407406)
Bell D, Chomarat P, Broyles D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med. 1999;190:1417–26. https://doi.org/10.1084/jem.190.10.1417 . (PMID: 10.1084/jem.190.10.1417105623172195690)
DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9:212. https://doi.org/10.1186/bcr1746.
Ghiringhelli F, Ménard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J Exp Med. 2005;202:1075–85. https://doi.org/10.1084/jem.20051511 . (PMID: 10.1084/jem.20051511162304752213209)
Faget J, Bendriss-Vermare N, Gobert M, et al. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4 + T cells. Can Res. 2012;72:6130–41. https://doi.org/10.1158/0008-5472.CAN-12-2409 . (PMID: 10.1158/0008-5472.CAN-12-2409)
Michea P, Noël F, Zakine E, et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat Immunol. 2018;19:885–97. https://doi.org/10.1038/s41590-018-0145-8 . (PMID: 10.1038/s41590-018-0145-830013147)
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61. https://doi.org/10.1016/j.ccell.2015.03.001 . (PMID: 10.1016/j.ccell.2015.03.001258588044400238)
Becker Y. Anticancer role of dendritic cells (DC) in human and experimental cancers—a review. Anticancer Res. 1992;12:511–20. (PMID: 1349798)
Banchereau J, Steinman R. Dendritic cells and the control of immunity. Exp Hematol. 1998;392:245–52. https://doi.org/10.1038/32588 . (PMID: 10.1038/32588)
Tazi A, Bouchonnet F, Grandsaigne M, et al. Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J Clin Investig. 1993;91:566–76. https://doi.org/10.1172/JCI116236 . (PMID: 10.1172/JCI1162367679411287979)
Coventry B. CD1a positive putative tumour infiltrating dendritic cells in human breast cancer. Anticancer Res. 1999;19:3183–7. (PMID: 10652609)
Coventry B, Heinzel S. CD1a in human cancers: a new role for an old molecule. Trends Immunol. 2004;25:242–8. https://doi.org/10.1016/j.it.2004.03.002 . (PMID: 10.1016/j.it.2004.03.00215099564)
Iwamoto M, Shinohara H, Miyamoto A, et al. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer. 2003;104:92–7. https://doi.org/10.1002/ijc.10915 . (PMID: 10.1002/ijc.1091512532424)
Mori L, De Libero G. Presentation of lipid antigens to T cells. Immunol Lett. 2008;117:1–8. https://doi.org/10.1016/j.imlet.2007.11.027 . (PMID: 10.1016/j.imlet.2007.11.02718243339)
Salio M, Silk JD, Cerundolo V. Recent advances in processing and presentation of CD1 bound lipid antigens. Curr Opin Immunol. 2010;22:81–8. https://doi.org/10.1016/j.coi.2009.12.008 . (PMID: 10.1016/j.coi.2009.12.00820080041)
Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol. 1999;17:297–329. https://doi.org/10.1146/annurev.immunol.17.1.297 . (PMID: 10.1146/annurev.immunol.17.1.29710358761)
Kai K, Tanaka T, Ide T, et al. Immunohistochemical analysis of the aggregation of CD1a-positive dendritic cells in resected specimens and its association with surgical outcomes for patients with gallbladder cancer. Translational Oncology. 2021;14: 100923. https://doi.org/10.1016/j.tranon.2020.100923 . (PMID: 10.1016/j.tranon.2020.10092333129106)
Golmoghaddam H, Pezeshki AM, Ghaderi A, et al. CD1a and CD1d genes polymorphisms in breast, colorectal and lung cancers. Pathology and Oncology Research. 2011;17:669–75. https://doi.org/10.1007/s12253-011-9367-x . (PMID: 10.1007/s12253-011-9367-x21258883)
Ni YH, Zhang X, Xin, Lu Z yi, , et al. Tumor-Infiltrating CD1a+ DCs and CD8+/FoxP3+ Ratios Served as Predictors for Clinical Outcomes in Tongue Squamous Cell Carcinoma Patients. Pathol Oncol Res. 2020;26:1687–95. https://doi.org/10.1007/s12253-019-00701-5 . (PMID: 10.1007/s12253-019-00701-531606786)
Hilly O, Rath-Wolfson L, Koren R, et al. CD1a-positive dendritic cell density predicts disease-free survival in papillary thyroid carcinoma. Pathol Res Pract. 2015;211:652–6. https://doi.org/10.1016/j.prp.2015.05.009 . (PMID: 10.1016/j.prp.2015.05.00926073685)
Eisenthal A, Polyvkin N, BramanteSchreiber L, et al. Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Hum Pathol. 2001;32:803–7. https://doi.org/10.1053/hupa.2001.26455 . (PMID: 10.1053/hupa.2001.2645511521223)
Grosche L, Knippertz I, König C, et al. The CD83 Molecule—an important immune checkpoint. Front Immunol. 2020;11:721. https://doi.org/10.3389/fimmu.2020.00721 . (PMID: 10.3389/fimmu.2020.00721323629007181454)
Smyth MJ, Crowe NY, Hayakawa Y, et al. NKT cells—conductors of tumor immunity? Curr Opin Immunol. 2002;14:165–71. https://doi.org/10.1016/S0952-7915(02)00316-3 . (PMID: 10.1016/S0952-7915(02)00316-311869887)
Prechtel AT, Steinkasserer A. CD83: An update on functions and prospects of the maturation marker of dendritic cells. Arch Dermatol Res. 2007;299:59–69. https://doi.org/10.1007/s00403-007-0743-z . (PMID: 10.1007/s00403-007-0743-z17334966)
Tze LE, Horikawa K, Domaschenz H, et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10—Driven MARCH1-mediated ubiquitination and degradation. J Exp Med. 2011;208:149–65. https://doi.org/10.1084/jem.20092203 . (PMID: 10.1084/jem.20092203212204523023131)
Coventry B, Lee P, Gibbs D, et al. Dendritic cell density and activation status in human breast cancer—CD1a, CMRF-44, CMRF-56 and CD-83 expression. Br J Cancer. 2002;86:546–51. https://doi.org/10.1038/sj.bjc.6600132 . (PMID: 10.1038/sj.bjc.6600132118705352375292)
Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. Wiley-Blackwell; 2017.
Senkus E, Kyriakides S, Penault-Llorca F, et al. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:8–30. https://doi.org/10.1093/annonc/mdv298 . (PMID: 10.1093/annonc/mdv298)
Wernicke M, Roitman P, Manfre D, et al. Breast cancer and the stromal factor. The “prometastatic healing process” hypothesis. Medicina. 2011;71:15–21. (PMID: 21296715)
Bloom HJG, Richardson WW. Histological Grading and Prognosis in Breast Cancer. Br J Cancer. 1957;11:359–77. https://doi.org/10.1038/bjc.1957.43 . (PMID: 10.1038/bjc.1957.43134997852073885)
Martinez LM, Labovsky V, De Lujan CM, et al. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE. 2015;10:e0121421. https://doi.org/10.1371/journal.pone.0121421 . (PMID: 10.1371/journal.pone.0121421258036864372565)
Coventry B, Morton J. CD1a-positive infiltrating-dendritic cell density and 5-year survival from human breast cancer. Br J Cancer. 2003;89:533–8. https://doi.org/10.1038/sj.bjc.6601114 . (PMID: 10.1038/sj.bjc.6601114128888262394362)
Goldman SA, Baker E, Weyant RJ, et al. Peritumoral CD1a-positive dendritic cells are associated with improved survival in patients with tongue carcinoma. Arch Otolaryngol Head Neck Surg. 1998;124:641–6. https://doi.org/10.1001/archotol.124.6.641 . (PMID: 10.1001/archotol.124.6.6419639473)
Coventry B, Weeks S, Heckford S, et al. Lack of IL-2 cytokine expression despite Il-2 messenger RNA transcription in tumor-infiltrating lymphocytes in primary human breast carcinoma: selective expression of early activation markers. J Immunol. 1996;156:3486–92. (PMID: 8617977)
Lin A, Schildknecht A, Nguyen LT, et al. Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett. 2010;127:77–84. https://doi.org/10.1016/j.imlet.2009.09.003 . (PMID: 10.1016/j.imlet.2009.09.00319778555)
Sombroek CC, Stam AGM, Masterson AJ, et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol. 2002;168:4333–43. https://doi.org/10.4049/jimmunol.168.9.4333 . (PMID: 10.4049/jimmunol.168.9.433311970975)
Labovsky V, Martinez LM, Calcagno M de L, et al.  Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer. Tumor Biol. 2016;37:13377–84. https://doi.org/10.1007/s13277-016-5268-7 .
Chomarat P, Banchereau J, Davoust J, et al. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1:510–4. https://doi.org/10.1038/82763 . (PMID: 10.1038/8276311101873)
Delamarre L, Pack M, Chang H, et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 2005;307:1630–4. https://doi.org/10.1126/science.1108003 . (PMID: 10.1126/science.110800315761154)
Ara T, DeClerck YA. Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer. 2010;46:1223–31. https://doi.org/10.1016/j.ejca.2010.02.026 . (PMID: 10.1016/j.ejca.2010.02.026203350162917917)
Axmann R, Böhm C, Krönke G, et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 2009;60:2747–56. https://doi.org/10.1002/art.24781 . (PMID: 10.1002/art.2478119714627)
Kudo O, Sabokbar A, Pocock A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7. https://doi.org/10.1016/S8756-3282(02)00915-8 . (PMID: 10.1016/S8756-3282(02)00915-812584029)
Kovacs E. Investigation of interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130) in sera of cancer patients. Biomed Pharmacother. 2001;55:391–6. https://doi.org/10.1016/S0753-3322(01)00079-8 . (PMID: 10.1016/S0753-3322(01)00079-811669502)
فهرسة مساهمة: Keywords: Biomarkers; Breast cancer; CD1a dendritic cells; CD83 dendritic cells; Metastasis
المشرفين على المادة: 0 (Antigens, CD)
0 (Antigens, CD1)
0 (Biomarkers, Tumor)
0 (Immunoglobulins)
0 (Membrane Glycoproteins)
تواريخ الأحداث: Date Created: 20210709 Date Completed: 20220125 Latest Revision: 20231213
رمز التحديث: 20231215
DOI: 10.1007/s12282-021-01270-9
PMID: 34240315
قاعدة البيانات: MEDLINE
الوصف
تدمد:1880-4233
DOI:10.1007/s12282-021-01270-9