دورية أكاديمية

Exogenous melatonin-mediated regulation of K + /Na + transport, H + -ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots.

التفاصيل البيبلوغرافية
العنوان: Exogenous melatonin-mediated regulation of K + /Na + transport, H + -ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots.
المؤلفون: Siddiqui MH; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia., Khan MN; Department of Biology, College of Haql, University of Tabuk, Tabuk, Saudi Arabia., Mukherjee S; Department of Botany, Jangipur College, University of Kalyani, Kalyani, West Bengal, India., Basahi RA; Department of Biology, College of Haql, University of Tabuk, Tabuk, Saudi Arabia., Alamri S; Department of Biology, College of Haql, University of Tabuk, Tabuk, Saudi Arabia., Al-Amri AA; Department of Biology, College of Haql, University of Tabuk, Tabuk, Saudi Arabia., Alsubaie QD; Department of Biology, College of Haql, University of Tabuk, Tabuk, Saudi Arabia., Ali HM; Department of Biology, College of Haql, University of Tabuk, Tabuk, Saudi Arabia., Al-Munqedhi BMA; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia., Almohisen IAA; Department of Biology, Faculty of Science and Humanities, Quwayiyah, Shaqra University, Shaqra, Saudi Arabia.
المصدر: Plant biology (Stuttgart, Germany) [Plant Biol (Stuttg)] 2021 Sep; Vol. 23 (5), pp. 797-805. Date of Electronic Publication: 2021 Jul 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101148926 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-8677 (Electronic) Linking ISSN: 14358603 NLM ISO Abbreviation: Plant Biol (Stuttg) Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley
Original Publication: Stuttgart : New York, NY : G. Thieme Verlag ; Thieme New York, c1999-
مواضيع طبية MeSH: Hydrogen Sulfide* , Solanum lycopersicum*/metabolism , Melatonin*/pharmacology, Antioxidants ; Plant Roots/metabolism ; Proton-Translocating ATPases/metabolism ; Seedlings/metabolism ; Sodium Chloride/pharmacology
مستخلص: Melatonin (Mel) and hydrogen sulphide (H 2 S) have emerged as potential regulators of plant metabolism during abiotic stress. Presence of excess NaCl in the soil is one of the main causes of reduced crop productivity worldwide. The present investigation examines the role of exogenous Mel and endogenous H 2 S in tomato seedlings grown under NaCl stress. Effect of 30 µm Mel on endogenous synthesis of H 2 S was examined in roots of NaCl-stressed (200 mm) tomato seedlings. Also, the impact of treatments on the oxidative stress markers, transport of K + and Na + , and activity of H + -ATPase and antioxidant enzymes was assessed. Results show that NaCl-stressed seedlings supplemented with 30 µm Mel had increased levels of endogenous H 2 S through enhanced L-cysteine desulfhydrase activity. Mel in association with H 2 S overcame the deleterious effect of NaCl and induced retention of K + that maintained a higher K + /Na + ratio. Use of plasma membrane inhibitors and an H 2 S scavenger revealed that Mel-induced regulation of K + /Na + homeostasis in NaCl-stressed seedling roots operates through endogenous H 2 S signalling. Synergistic effects of Mel and H 2 S also reduced the generation of ROS and oxidative destruction through the enhanced activity of antioxidant enzymes. Thus, it is suggested that the protective function of Mel against NaCl stress operates through an endogenous H 2 S-dependent pathway, wherein H + -ATPase-energized secondary active transport regulates K + /Na + homeostasis.
(© 2021 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.)
References: Abdelaal K.A., EL-Maghraby L.M., Elansary H., Hafez Y.M., Ibrahim E.I., El-Banna M., El-Esawi M., Elkelish A. (2020) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10, 26.
Ahmad R., Ali S., Rizwan M., Dawood M., Farid M., Hussain A., Wijaya L., Alyemeni M.N., Ahmad P. (2020a) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiologia Plantarum, 168, 289-300.
Ahmad S., Cui W., Kamran M., Ahmad I., Meng X., Wu X., Su W., Javed T., El-Serehy H.A., Jia Z., Han Q. (2020b) Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10187-0.
Ahn H.R., Kim Y.J., Lim Y.J., Duan S., Eom S.H., Jung K.H. (2021) Key genes in the melatonin biosynthesis pathway with circadian rhythm are associated with various abiotic stresses. Plants, 10, 129.
Alamri S., Ali H.M., Khan M.I.R., Singh V.P., Siddiqui M.H. (2020) Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. Plant Physiology and Biochemistry, 155, 20-34.
Anschütz U., Becker D., Shabala S. (2014) Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 171, 670-687.
Beauchamp C., Fridovich I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I., Haneklaus S., Schnug E. (2004) Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. Journal of Experimental Botany, 55, 2305-2312.
Bradford M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Buttar Z.A., Wu S.N., Arnao M.B., Wang C., Ullah I., Wang C. (2020) Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9, 809.
Cakmak I., Horst J.H. (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83, 463-468.
Cakmak I., Marschner H. (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1227.
Chen J., Wang W.H., Wu F.H., You C.Y., Liu W.T., Dong X.K. (2013) Hydrogen sulphide alleviates aluminium toxicity in barley seedlings. Plant & Soil, 362, 301-318.
Chen L.i., Liu L., Lu B., Ma T., Jiang D., Li J., Zhang K.E., Sun H., Zhang Y., Bai Z., Li C. (2020) Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS One, 15, e0228241.
Chen Z., Xie Y., Gu Q., Zhao G., Zhang Y., Cui W., Xu S., Wang R., Shen W. (2017) The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radical Biology and Medicine, 108, 465-477.
Christou A., Manganaris G.A., Papadopoulos I., Fotopouls V. (2013) Hydrogen sulphide induces systemic tolerance to salinity and nonionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. Journal of Experimental Botany, 64, 1953-1966.
Corpas F.J. (2019) Nitric oxide and hydrogen sulfide in higher plants under physiological and stress conditions. Antioxidants, 8, 457.
Corpas F.J., González-Gordo S., Cañas A., Palma J.M. (2019) Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany, 70, 4391-4404.
Corpas F.J., González-Gordo S., Palma J.M. (2021) Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. Journal of Experimental Botany, 72, 830-847.
Corpas F.J., Palma J. (2020) H2S signaling in plants and applications in agriculture. Journal of Advanced Research, 24, 131-137.
Darko E., Végh B., Khalil R., Marček T., Szalai G., Pál M., Janda T. (2019) Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS One, 14, e0226151.
Dawood M.F.A., Sohag A.A.M., Tahjib-Ul-Arif M.D., Latef A.A.H. (2021) Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses. Plant Physiology and Biochemistry, 159, 347-362.
Demidchik V., Straltsova D., Medvedev S.S., Pozhvanov G.A., Sokolik A., Yurin V. (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65, 1259-1270.
Deng Y.Q., Bao J., Yuan F., Liang X., Feng Z.T., Wang B.S. (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regulation, 79, 391-399.
Elkelish A., Qari S.H., Mazrou Y.S.A., Abdelaal K.A.A., Hafez Y.M., Abu-Elsaoud A.M., Batiha G.-S., El-Esawi M.A., El Nahhas N. (2020) Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants, 9, 431.
El-Sayed A.I., Boulila M., Rafudeen M.S., Mohamed A.H., Sengupta S., Rady M., Omar A.A. (2020) Melatonin in regulatory mechanisms and phylogenetic analyses of melatonin biosynthesis related genes extracted from peanut under salinity stress. Plants, 9, 854.
Elstner E.F., Heupel A. (1976) Inhibition of nitrite formation from hydroxyl ammonium chloride. A simple assay for superoxide dismutase. Analytical Biochemistry, 70, 616-620.
Fang T., Cao Z.Y., Li J.L., Shen W.B., Huang L.Q. (2014) Auxin-induced hydrogen sulphide generation is involved in lateral root formation in tomato. Plant Physiology and Biochemistry, 76, 44-51.
García-Morales S., Gómez-Merino F.C., Trejo-Téllez F.C., Tavitas-Fuentes L., Hernández-Aragón L. (2018) Osmotic stress affects growth, content of chlorophyll, abscisic acid, Na+, and K+, and expression of novel NAC genes in contrasting rice cultivars. Biologia Plantarum, 62, 307-317.
Goyal V., Jhanghel D., Mehrotra S. (2021) Emerging warriors against salinity in plants - nitric oxide and hydrogen sulphide. Physiologia Plantarum, 171, 896.
Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Al M.J., Fujita M., Fotopoulos V. (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.
Hejl A.M., Koster K.L. (2004) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). Journal of Chemical Ecology, 30, 453-471.
Iqbal N., Umar S., Khan N.A., Corpas F.J. (2021) Nitric Oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) plants. Antioxidants, 10, 108.
Kaur H., Bhatla S.C. (2016) Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide, 59, 42-53.
Kaya C., Ashraf M. (2019a) The mechanism of hydrogen sulfide mitigation of iron deficiency induced chlorosis in strawberry (Fragaria × ananassa) plants. Protoplasma, 56, 371-382.
Kaya C., Higgs D., Ashraf M., Alyemeni M.N., Ahmad P. (2020) Integrative roles of nitric oxide and hydrogen sulfide in melatonin induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiologia Plantarum, 168, 256-277.
Keisham M., Mukherjee S., Bhatla S.C. (2018) Mechanisms of sodium transport in plants - progress and challenges. International Journal of Molecular Sciences, 19, 647.
Kerchev P., Meer T.V., Sujeeth N., Verlee A., Stevens C.V., Breusegem F.V., Gechev T. (2020) Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances, 40, 107503.
Khan M.N., AlSolami M.A., Basahi R.A., Siddiqui M.H., Al-Huqail A.A., Abbas Z.K., Siddiqui Z.H., Ali H.M., Khan F. (2020b) Nitric oxide is involved in nano-titanium dioxide-induced activation of antioxidant defense system and accumulation of osmolytes under water-deficit stress in Vicia faba L. Ecotoxicology and Environmental Safety, 190, 110152.
Khan M.N., AlZuaibr F.M., Al-Huqail A.A., Siddiqui M.H., Ali H.M., Al-Muwayhi M.A., Al-Haque H.N. (2018) Hydrogen sulfide-mediated activation of O-acetylserine (thiol) lyase and L/D-cysteine desulfhydrase enhance dehydration tolerance in Eruca sativa Mill. International Journal of Molecular Sciences, 19, 3981. https://doi.org/10.3390/ijms19123981.
Khan M.N., Mobin M., Abbas Z.K., Siddiqui M.H. (2017) Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide, 68, 91-102.
Khan M.N., Siddiqui M.H., AlSolami M.A., Alamri S., Hu Y., Ali M.H., Al-Amri A.A., Alsubaie Q.D., Al-Munqedhi M.A.B., Al-Ghamdi A. (2020a) Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiology and Biochemistry, 156, 278-290.
Khan M.N., Siddiqui M.H., Mohammad F., Naeem M. (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide, 27, 210-218.
Khan M.N., Siddiqui M.H., Mukherjee S., Alamri S., Al-Amri A.A., Alsubaie Q.D., Al-Munqedhi B.M.A., Ali H.M. (2021) Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots. Plant Physiology and Biochemistry, 159, 211-225.
Lai D., Mao Y.u., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Science, 225, 117-129.
Li C., Wang P., Wei Z., Liang D., Liu C., Yin L., Jia D., Fu M., Ma F. (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 53, 298-306.
Li H., Guo Y., Lan Z., Xu K., Chang J., Ahammed G.J., Ma J., Wei C., Zhang X. (2021) Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. Horticultural Research, 8, 57.
Li J., Jia H., Wang J., Cao Q., Wen Z. (2014) Hydrogen sulphide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stressed Arabidopsis thaliana root. Protoplasma, 251, 899-912.
Li Y., Zhang Y., Feng F., Liang D., Cheng L., Ma F., Shi S. (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell, Tissue and Organ Culture, 102, 337-345.
Li Z.G. (2015) Quantification of hydrogen sulfide concentration using methylene blue and 5, 5-dithiobis (2-Nitrobenzoic Acid) methods in plants. Methods in Enzymology, 554, 101-110.
Li Z.G., Xiang R.H., Wang J.Q. (2021) Hydrogen sulfide-phytohormone interaction in plants under physiological and stress conditions. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-021-10350-1.
Liu J., Shabala S., Zhang J., Ma G., Chen D., Shabala L., Zeng F., Chen Z.H., Zhou M., Venkataraman G., Zhao Q. (2020) Melatonin improves rice salinity stress tolerance by NADPH oxidase dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant, Cell and Environment, 43, 2591-2605.
Liu Z.G., Guo Y.K., Bai J.G. (2010) Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. Journal of Plant Growth Regulation, 29, 171-183.
Lutts S., Kinet J.M., Bouharmont J. (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L) varieties differing in salinity resistance. Journal of Experimental Botany, 46, 1843-1852.
Maathuis F.J.M. (2014) Sodium in plants: perception, signaling, and regulation of sodium fluxes. Journal of Experimental Botany, 65, 849-858.
Majumdar A., Kar R.K. (2018) Congruence between PM H+-ATPase and NADPH oxidase during root growth: a necessary probability. Protoplasma, 255, 1129-1137.
Marschner H. (1995) Mineral nutrition of higher plants. 2nd edn. Academic Press, London, UK.
Mukherjee S., Bhatla S.C. (2020) Exogenous melatonin modulates endogenous H2S homeostasis and L-cysteine desulfhydrase activity in salt-stressed tomato (Solanum lycopersicum L. var. cherry) seedling cotyledons. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10261-7.
Rather B.A., Mir I.R., Sehar Z., Anjum N.A., Masood A., Khan N.A. (2020) The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. Plant Physiology and Biochemistry, 155, 523-534.
Sako K., Nguyen H.M., Seki M. (2020) Advances in chemical priming to enhance abiotic stress tolerance in plants. Plant and Cell Physiology, 61, 1995-2003.
Savvides A., Ali S., Tester M., Fotopoulos V. (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 21, 329-340.
Shahid M.A., Sarkhosh A., Khan N., Balal R.M., Ali S., Rossi L., Gómez C., Mattson N., Nasim W., Garcia-Sanchez F. (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10, 938.
Siddiqui M.H., Alamri S., Khan M.N., Corpas F.J., Al-Amri A.A., Alsubaie Q.D., Ali H.M., Kalaji H.M., Ahmad P. (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. Journal of Hazardous Materials, 398, 122882.
Su J., Yang X., Shao Y., Chen Z., Shen W. (2021) Molecular hydrogen-induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. Plant, Cell and Environment, 44, 476-490.
Sun C., Liu L., Wang L., Li B., Jin C., Lin X. (2021) Melatonin: a master regulator of plant development and stress responses. Journal of Integrative Plant Biology, 63, 126-145.
Thomas T.D., Dinakar C., Puthur J.T. (2020) Effect of UV-B priming on the abiotic stress tolerance of stress-sensitive rice seedlings: priming imprints and cross-tolerance. Plant Physiology and Biochemistry, 147, 21-30.
Upadhyaya A., Sankhla D., Davis T.D., Sankhla N., Smith B.N. (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. Journal of Plant Physiology, 121, 453-461.
Velikova V., Yordanov I., Edreva A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 59-66.
Wang D., Chen Q., Chen W., Guo Q., Xia Y., Wang S., Jing D., Liang G. (2021) Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environmental and Experimental Botany, 181, 104291.
Wei Y., Bai Y., Cheng X., Reiter R.J., Yin X., Shi H. (2021) Lighting the way: advances in transcriptional regulation and integrative crosstalk of melatonin biosynthetic enzymes in cassava. Journal of Experimental Botany, 72, 161-166.
Yamasaki S., Dillenburg L.C. (1999) Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal, 11, 69-75.
Yu Y., Wang A., Li X., Kou M., Wang W., Chen X., Xu T., Zhu M., Ma D., Li Z., Sun J. (2018) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+-ATPase activity and K+/Na+ homeostasis in sweet potato. Frontiers in Plant Science, 9, 256.
Zhao N., Zhu H., Zhang H., Sun J., Zhou J., Deng C., Zhang Y., Zhao R., Zhou X., Lu C., Lin S., Chen S. (2018) Hydrogen sulfide mediates K+ and Na+ homeostasis in the roots of salt-resistant and salt-sensitive poplar species subjected to NaCl stress. Frontiers in Plant Sciences, 9, 1366.
معلومات مُعتمدة: RG-1441-438 King Saud University
فهرسة مساهمة: Keywords: Hydrogen sulphide; K+/Na+ homeostasis; melatonin; salinity; signalling
المشرفين على المادة: 0 (Antioxidants)
451W47IQ8X (Sodium Chloride)
EC 3.6.3.14 (Proton-Translocating ATPases)
JL5DK93RCL (Melatonin)
YY9FVM7NSN (Hydrogen Sulfide)
تواريخ الأحداث: Date Created: 20210715 Date Completed: 20210831 Latest Revision: 20221207
رمز التحديث: 20231215
DOI: 10.1111/plb.13296
PMID: 34263973
قاعدة البيانات: MEDLINE