دورية أكاديمية

HUWE1 employs a giant substrate-binding ring to feed and regulate its HECT E3 domain.

التفاصيل البيبلوغرافية
العنوان: HUWE1 employs a giant substrate-binding ring to feed and regulate its HECT E3 domain.
المؤلفون: Grabarczyk DB; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. daniel.grabarczyk@imp.ac.at., Petrova OA; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Deszcz L; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Kurzbauer R; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Murphy P; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Ahel J; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Vogel A; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Gogova R; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Faas V; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Kordic D; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Schleiffer A; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Meinhart A; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Imre R; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Lehner A; Vienna Biocenter Core Facilities, Vienna BioCenter, Vienna, Austria., Neuhold J; Vienna Biocenter Core Facilities, Vienna BioCenter, Vienna, Austria., Bader G; Boehringer Ingelheim RCV, Vienna, Austria., Stolt-Bergner P; Boehringer Ingelheim RCV, Vienna, Austria., Böttcher J; Boehringer Ingelheim RCV, Vienna, Austria., Wolkerstorfer B; Boehringer Ingelheim RCV, Vienna, Austria., Fischer G; Boehringer Ingelheim RCV, Vienna, Austria., Grishkovskaya I; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Haselbach D; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria., Kessler D; Boehringer Ingelheim RCV, Vienna, Austria., Clausen T; Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria. tim.clausen@imp.ac.at.
المصدر: Nature chemical biology [Nat Chem Biol] 2021 Oct; Vol. 17 (10), pp. 1084-1092. Date of Electronic Publication: 2021 Jul 22.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Caenorhabditis elegans Proteins/*metabolism , Microsporidia/*metabolism , Ubiquitin-Protein Ligases/*metabolism, Animals ; Caenorhabditis elegans/genetics ; Caenorhabditis elegans/metabolism ; Caenorhabditis elegans Proteins/chemistry ; Caenorhabditis elegans Proteins/genetics ; Fungal Proteins ; Insecta ; Microsporidia/genetics ; Models, Molecular ; Protein Conformation ; Protein Domains ; Ubiquitin-Protein Ligases/chemistry ; Ubiquitin-Protein Ligases/genetics
مستخلص: HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates. The protein adopts a remarkable snake-like structure, where the C-terminal HECT domain heads an extended alpha-solenoid body that coils in on itself and houses various protein-protein interaction modules. Our integrative structural analysis shows that this ring structure is highly dynamic, enabling the flexible HECT domain to reach protein targets presented by the various acceptor sites. Together, our data demonstrate how HUWE1 is regulated by its unique structure, adapting a promiscuous E3 ligase to selectively target unassembled orphan proteins.
(© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.)
التعليقات: Comment in: Nat Chem Biol. 2021 Oct;17(10):1014-1015. (PMID: 34345051)
References: Ciechanover, A., Orian, A. & Schwartz, A. L. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442–451 (2000). (PMID: 1079748410.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q)
Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006). (PMID: 1641347910.1016/j.cell.2005.12.025)
Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751 (2004). (PMID: 1534038110.1038/nrm1471)
Alfieri, C., Zhang, S. & Barford, D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol. 7, 1700204 (2017). (PMID: 10.1098/rsob.170204)
Kamadurai, H. B. et al. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLife 2, e00828 (2013). (PMID: 23936628373809510.7554/eLife.00828)
Chen, Z. et al. A tunable brake for HECT ubiquitin ligases. Mol. Cell 66, 345–357 (2017). (PMID: 28475870548941910.1016/j.molcel.2017.03.020)
Lorenz, S. Structural mechanisms of HECT-type ubiquitin ligases. Biol. Chem. 399, 127–145 (2018). (PMID: 2901634910.1515/hsz-2017-0184)
Kao, S. H., Wu, H. T. & Wu, K. J. Ubiquitination by HUWE1 in tumorigenesis and beyond. J. Biomed. Sci. 25, 67 (2018). (PMID: 30176860612262810.1186/s12929-018-0470-0)
Zhong, Q., Gao, W., Du, F. & Wang, X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085–1095 (2005). (PMID: 1598995710.1016/j.cell.2005.06.009)
Inoue, S. et al. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev. 27, 1101–1114 (2013). (PMID: 23699408367264510.1101/gad.214577.113)
Chen, D. et al. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071–1083 (2005). (PMID: 1598995610.1016/j.cell.2005.03.037)
Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123, 409–421 (2005). (PMID: 1626933310.1016/j.cell.2005.08.016)
Urbán, N. et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353, 292–295 (2016). (PMID: 27418510532152810.1126/science.aaf4802)
Hao, Z. et al. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression. Nat. Commun. 8, 14003 (2017). (PMID: 28084302524183210.1038/ncomms14003)
DeGroot, R. E. A. et al. Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the wnt signaling pathway. Sci. Signal. 7, ra26 (2014). (PMID: 10.1126/scisignal.2004985)
Hall, J. R. et al. Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage. Mol. Biol. Cell 18, 3340–3350 (2007). (PMID: 17567951195174510.1091/mbc.e07-02-0173)
Parsons, J. L. et al. Ubiquitin ligase ARF-BP1/Mule modulates base excision repair. EMBO J. 28, 3207–3215 (2009). (PMID: 19713937277108110.1038/emboj.2009.243)
Wang, X. et al. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. Biochem. Biophys. Res. Commun. 444, 549–554 (2014). (PMID: 2447255610.1016/j.bbrc.2014.01.075)
Xu, Y., Anderson, D. E. & Ye, Y. The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation. Cell Discov. 2, 16040 (2016). (PMID: 27867533510203010.1038/celldisc.2016.40)
Sung, M. K. et al. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 5, e19105 (2016). (PMID: 27552055502647310.7554/eLife.19105)
Liu, Z., Oughtred, R. & Wing, S. S. Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol. Cell. Biol. 25, 2819–2831 (2005). (PMID: 15767685106163910.1128/MCB.25.7.2819-2831.2005)
Singh, R. K., Kabbaj, M. H., Paik, J. & Gunjan, A. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat. Cell Biol. 11, 925–933 (2009). (PMID: 19578373272042810.1038/ncb1903)
Deshaies, R. J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12, 94 (2014). (PMID: 25385277422686610.1186/s12915-014-0094-0)
Oromendia, A. B. & Amon, A. Aneuploidy: implications for protein homeostasis and disease. Dis. Model Mech. 7, 15–20 (2014). (PMID: 24396150388204410.1242/dmm.013391)
Myant, K. B. et al. HUWE1 is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation. EMBO Mol. Med. 9, 181–197 (2017). (PMID: 2800333410.15252/emmm.201606684)
Peter, S. et al. Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. EMBO Mol. Med. 6, 1525–1541 (2014). (PMID: 25253726428797310.15252/emmm.201403927)
Froyen, G. et al. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am. J. Hum. Genet. 82, 432–443 (2008). (PMID: 18252223242691510.1016/j.ajhg.2007.11.002)
Jäckl, M. et al. β-Sheet augmentation is a conserved mechanism of priming HECT E3 ligases for ubiquitin ligation. J. Mol. Biol. 430, 3218–3233 (2018). (PMID: 2996404610.1016/j.jmb.2018.06.044)
Michel, M. A., Swatek, K. N., Hospenthal, M. K. & Komander, D. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Mol. Cell 68, 233–246 (2017). (PMID: 28943312564050610.1016/j.molcel.2017.08.020)
White, A. E., Hieb, A. R. & Luger, K. A quantitative investigation of linker histone interactions with nucleosomes and chromatin. Sci. Rep. 6, 19122 (2016). (PMID: 26750377470751710.1038/srep19122)
Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 (2017). (PMID: 28056090524924210.1371/journal.pcbi.1005324)
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). (PMID: 2005704410.1107/S0907444909042073)
Hunkeler, M. et al. Modular HUWE1 architecture serves as hub for degradation of cell-fate decision factors. Preprint at https://www.biorxiv.org/content/10.1101/2020.08.19.257352v1 (2020).
Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94, 193–204 (1998). (PMID: 969594810.1016/S0092-8674(00)81419-1)
Huber, A. H. & Weis, W. I. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105, 391–402 (2001). (PMID: 1134859510.1016/S0092-8674(01)00330-0)
Kamadurai, H. B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol. Cell 36, 1095–1102 (2009). (PMID: 20064473285919510.1016/j.molcel.2009.11.010)
Sander, B., Xu, W., Eilers, M., Popov, N. & Lorenz, S. A conformational switch regulates the ubiquitin ligase HUWE1. eLife 6, e21036 (2017). (PMID: 28193319530889610.7554/eLife.21036)
Pandya, R. K., Partridge, J. R., Love, K. R., Schwartz, T. U. & Ploegh, H. L. A structural element within the HUWE1 HECT domain modulates self-ubiquitination and substrate ubiquitination activities. J. Biol. Chem. 285, 5664–5673 (2010). (PMID: 2000771310.1074/jbc.M109.051805)
Forget, A. et al. Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev. Cell 29, 649–661 (2014). (PMID: 2496069210.1016/j.devcel.2014.05.014)
Baek, K. et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 578, 461–466 (2020). (PMID: 32051583705021010.1038/s41586-020-2000-y)
Neuhold, J. et al. GoldenBac: a simple, highly efficient, and widely applicable system for construction of multi-gene expression vectors for use with the baculovirus expression vector system. BMC Biotechnol. 20, 26 (2020). (PMID: 32398045721639210.1186/s12896-020-00616-z)
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011). (PMID: 21460447306974410.1107/S0907444911007773)
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). (PMID: 20124692281566510.1107/S0907444909047337)
Tickle, I. J. et al. STARANISO. https://staraniso.globalphasing.org/cgi-bin/staraniso.cgi (2018).
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013). (PMID: 23793146368952310.1107/S0907444913000061)
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). (PMID: 19461840248347210.1107/S0021889807021206)
Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009). (PMID: 19465773268573510.1107/S0907444909012098)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493)
Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012). (PMID: 22505257332259610.1107/S0907444911056058)
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193)
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). (PMID: 26278980676066210.1016/j.jsb.2015.08.008)
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019). (PMID: 31240256658450510.1038/s42003-019-0437-z)
Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021). (PMID: 33542510818361310.1038/s41592-020-01049-4)
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). (PMID: 20124702281567010.1107/S0907444909052925)
Dorfer, V. et al. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 13, 3679–3684 (2014). (PMID: 24909410411947410.1021/pr500202e)
Doblmann, J. et al. apQuant: accurate label-free quantification by quality filtering. J. Proteome Res. 18, 535–541 (2019). (PMID: 30351950)
Graham, M., Combe, C., Kolbowski, L. & Rappsilber, J. xiView: a common platform for the downstream analysis of crosslinking mass spectrometry data. Preprint at https://www.biorxiv.org/content/10.1101/561829v1 (2019).
معلومات مُعتمدة: 694978 International ERC_ European Research Council; F 7905 Austria FWF_ Austrian Science Fund FWF
المشرفين على المادة: 0 (Caenorhabditis elegans Proteins)
0 (Fungal Proteins)
EC 2.3.2.27 (Ubiquitin-Protein Ligases)
تواريخ الأحداث: Date Created: 20210723 Date Completed: 20211012 Latest Revision: 20221030
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7611724
DOI: 10.1038/s41589-021-00831-5
PMID: 34294896
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-021-00831-5