دورية أكاديمية

Enhancing Checkpoint Inhibitor Therapy in Solid Tissue Cancers: The Role of Diet, the Microbiome & Microbiome-Derived Metabolites.

التفاصيل البيبلوغرافية
العنوان: Enhancing Checkpoint Inhibitor Therapy in Solid Tissue Cancers: The Role of Diet, the Microbiome & Microbiome-Derived Metabolites.
المؤلفون: Malczewski AB; Icon Cancer Centre, Wesley, Brisbane, QLD, Australia.; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.; Science and Technology, University of New England, Armidale, NSW, Australia., Ketheesan N; Science and Technology, University of New England, Armidale, NSW, Australia., Coward JIG; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.; Icon Cancer Centre, South Brisbane, Brisbane, QLD, Australia., Navarro S; Department of Immunology, QIMR Berghofer, Brisbane, QLD, Australia.; Woolworths Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, South Brisbane, QLD, Australia.
المصدر: Frontiers in immunology [Front Immunol] 2021 Jul 07; Vol. 12, pp. 624434. Date of Electronic Publication: 2021 Jul 07 (Print Publication: 2021).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation] Country of Publication: Switzerland NLM ID: 101560960 Publication Model: eCollection Cited Medium: Internet ISSN: 1664-3224 (Electronic) Linking ISSN: 16643224 NLM ISO Abbreviation: Front Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Lausanne : Frontiers Research Foundation]
مواضيع طبية MeSH: Diet/*methods , Gastrointestinal Microbiome/*drug effects , Immune Checkpoint Inhibitors/*therapeutic use , Metabolome/*immunology , Neoplasms/*drug therapy, Animals ; Bacteria/metabolism ; Diet/adverse effects ; Dysbiosis/complications ; Gastrointestinal Microbiome/immunology ; Humans ; Immunomodulation ; Life Style ; Metabolome/drug effects ; Mice ; Neoplasms/immunology
مستخلص: Host immunity plays a central role in the regulation of anti-tumour responses during checkpoint inhibitor therapy (CIT). The mechanisms involved in long lasting remission remain unclear. Animal studies have revealed that the microbiome influences the host immune response. This is supported by human studies linking a higher microbial richness and diversity with enhanced responses to CIT. This review focuses on the role of diet, the microbiome and the microbiome-derived metabolome in enhancing responses to current CIT in solid tissue cancers. The Western diet has been associated with dysbiosis, inflammation and numerous metabolic disorders. There is preliminary evidence that lifestyle factors including a high fibre diet are associated with improved responses to CIT via a potential effect on the microbiota. The mechanisms through which the microbiota may regulate long-term immunotherapy responses have yet to be determined, although bacterial-metabolites including short chain fatty acids (SCFAs) are recognized to have an impact on T cell differentiation, and may affect T effector/regulatory T cell balance. SCFAs were also shown to enhance the memory potential of activated CD8 T cells. Many therapeutic approaches including dietary manipulation and fecal transplantation are currently being explored in order to enhance immunotherapy responses. The microbiome-derived metabolome may be one means through which bacterial metabolic products can be monitored from the start of treatment and could be used to identify patients at risk of poor immunotherapy responses. The current review will discuss recent advances and bring together literature from related fields in nutrition, oncology and immunology to discuss possible means of modulating immunity to improve responses to current CIT.
Competing Interests: SN is funded by the Queensland Children's Hospital Foundation through philanthropic funding from Woolworths. The CHF and Woolworths were not involved in any stage of this research. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2021 Malczewski, Ketheesan, Coward and Navarro.)
References: Science. 2006 Sep 29;313(5795):1960-4. (PMID: 17008531)
BMC Cancer. 2019 Nov 12;19(1):1100. (PMID: 31718585)
J Natl Cancer Inst. 2021 Feb 1;113(2):162-170. (PMID: 32294209)
J Immunother Cancer. 2019 Nov 6;7(1):287. (PMID: 31694714)
Nat Rev Gastroenterol Hepatol. 2016 Sep;13(9):508-16. (PMID: 27329806)
Nat Commun. 2020 May 1;11(1):2168. (PMID: 32358520)
Mucosal Immunol. 2015 Jan;8(1):80-93. (PMID: 24917457)
EClinicalMedicine. 2020 Mar 16;20:100301. (PMID: 32300746)
Ann Oncol. 2019 Oct 1;30(10):1572-1579. (PMID: 31268133)
Cell. 2017 Feb 9;168(4):707-723. (PMID: 28187290)
Front Immunol. 2017 Jul 28;8:838. (PMID: 28804483)
Adv Immunol. 2014;121:91-119. (PMID: 24388214)
Nature. 2012 Jun 13;486(7402):207-14. (PMID: 22699609)
Front Immunol. 2017 Aug 28;8:1036. (PMID: 28894447)
JAMA Netw Open. 2020 Apr 1;3(4):e202895. (PMID: 32297948)
Lancet Oncol. 2016 Dec;17(12):e542-e551. (PMID: 27924752)
Nat Med. 2014 Feb;20(2):159-66. (PMID: 24390308)
Lancet Oncol. 2019 Feb;20(2):e77-e91. (PMID: 30712808)
Immunity. 2014 Jun 19;40(6):833-42. (PMID: 24950203)
Science. 2013 Aug 2;341(6145):569-73. (PMID: 23828891)
Cancer Cell. 2018 Apr 9;33(4):570-580. (PMID: 29634945)
J Clin Oncol. 2007 Jun 20;25(18):2586-93. (PMID: 17577038)
Nature. 2014 Jan 23;505(7484):559-63. (PMID: 24336217)
Nature. 2013 Dec 19;504(7480):451-5. (PMID: 24226773)
Nat Immunol. 2011 Jan;12(1):5-9. (PMID: 21169997)
Ann Oncol. 2017 Jun 1;28(6):1368-1379. (PMID: 28368458)
Cell. 2018 Sep 6;174(6):1406-1423.e16. (PMID: 30193113)
Br J Cancer. 2018 Jan;118(1):9-16. (PMID: 29319049)
Gut. 2018 Sep;67(9):1716-1725. (PMID: 29934437)
Trends Cancer. 2020 Mar;6(3):192-204. (PMID: 32101723)
Science. 2018 Jan 5;359(6371):104-108. (PMID: 29302014)
Nat Rev Cancer. 2020 Feb;20(2):125-138. (PMID: 31848467)
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6. (PMID: 20679230)
Science. 2015 Nov 27;350(6264):1084-9. (PMID: 26541606)
Oncoimmunology. 2018 Aug 20;7(11):e1507670. (PMID: 30377571)
Science. 2018 Jan 5;359(6371):97-103. (PMID: 29097493)
Front Microbiol. 2016 Jan 12;6:1543. (PMID: 26793178)
Nat Commun. 2015 Apr 01;6:6734. (PMID: 25828455)
Front Pharmacol. 2018 Sep 20;9:1050. (PMID: 30294272)
Front Immunol. 2019 Nov 22;10:2754. (PMID: 31824517)
J Clin Oncol. 2011 May 20;29(15):1949-55. (PMID: 21483002)
J Transl Med. 2020 Feb 3;18(1):49. (PMID: 32014010)
Science. 2015 Nov 27;350(6264):1079-84. (PMID: 26541610)
Science. 2018 Jan 5;359(6371):91-97. (PMID: 29097494)
Oncogene. 2010 Feb 25;29(8):1093-102. (PMID: 19946335)
Sci Rep. 2016 Jan 08;6:19032. (PMID: 26742586)
Neoplasia. 2017 Oct;19(10):848-855. (PMID: 28923537)
Immunity. 2019 Aug 20;51(2):285-297.e5. (PMID: 31272808)
Oncologist. 2020 Jan;25(1):55-63. (PMID: 31292268)
Nat Rev Immunol. 2009 May;9(5):313-23. (PMID: 19343057)
Immunity. 2014 Jan 16;40(1):128-39. (PMID: 24412617)
Nature. 2013 Dec 19;504(7480):446-50. (PMID: 24226770)
فهرسة مساهمة: Keywords: cancer immunotherapy; checkpoint inhibitor therapy; metabolome; microbiome; short chain fatty acids
المشرفين على المادة: 0 (Immune Checkpoint Inhibitors)
تواريخ الأحداث: Date Created: 20210726 Date Completed: 20210915 Latest Revision: 20210915
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8293987
DOI: 10.3389/fimmu.2021.624434
PMID: 34305883
قاعدة البيانات: MEDLINE