دورية أكاديمية

Monolayer 1T and 1T' MoSO as Promising Electrocatalyst for Hydrogen Evolution based on First Principle Calculations.

التفاصيل البيبلوغرافية
العنوان: Monolayer 1T and 1T' MoSO as Promising Electrocatalyst for Hydrogen Evolution based on First Principle Calculations.
المؤلفون: Li FF; School of Physics, Nankai University, Tianjin, 300071, P. R. China., Niu ZP; School of Physics, Nankai University, Tianjin, 300071, P. R. China., Zhang LX; School of Physics, Nankai University, Tianjin, 300071, P. R. China.
المصدر: Chemphyschem : a European journal of chemical physics and physical chemistry [Chemphyschem] 2021 Oct 05; Vol. 22 (19), pp. 2034-2041. Date of Electronic Publication: 2021 Aug 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 100954211 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-7641 (Electronic) Linking ISSN: 14394235 NLM ISO Abbreviation: Chemphyschem Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH Verlag, c2000-
مستخلص: Molybdenum disulfide (MoS 2 ) has been regarded as one of the most promising candidates for replacing Pt group noble metals as an efficient electrocatalyst to enhance the hydrogen evolution reaction (HER) in consideration of its relatively high earth abundance. Recent studies show that the catalytic efficiency of MoS 2 for HER can be promoted by the presence of 1T-phase MoS 2 . It is hard to precisely control the formation of 1T-MoS 2 , however, due to its metastability relative to 2H-MoS 2 . Elevating the stability of 1T phase allotrope is therefore of great importance and could be realized by replacing divalent S with monovalent elements or groups according to crystal field theory, which has been demonstrated through our first-principles density functional theory (DFT) calculation results. Differential Gibbs free energy analysis for hydrogen adsorption (ΔG H* ) suggest that 1T and 1T' MoSO (O doped MoS 2 ) might be taken as potential candidate catalysts for HER process with better performance than 1T and 1T' MoS 2 . We also propose a probable approach to synthesize 1T and 1T' MoSO under oxidation circumstance environment of graphene oxide.
(© 2021 Wiley-VCH GmbH.)
References: J. A. Turner, Science 2004, 305, 972-974.
C. G. Morales-Guio, L.-A. Stern, X. Hu, Chem. Soc. Rev. 2014, 43, 6555-6569.
J. Xie, Y. Xie, ChemCatChem 2015, 7, 2568-2580.
J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963-969.
Y. Yang, H. Fei, G. Ruan, C. Xiang, J. M. Tour, Adv. Mater. 2014, 26, 8163-8168.
D. Y. Chung, S.-K. Park, Y.-H. Chung, S.-H. Yu, D.-H. Lim, N. Jung, H. C. Ham, H.-Y. Park, Y. Piao, S. J. Yoo, Y.-E. Sung, Nanoscale 2014, 6, 2131-2136.
B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Norskov, J. Am. Chem. Soc. 2005, 127, 5308-5309.
T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100-102.
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 17881-17888.
M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274-10277.
L. Cai, W. Cheng, T. Yao, Y. Huang, F. Tang, Q. Liu, W. Liu, Z. Sun, F. Hu, Y. Jiang, W. Yan, S. Wei, J. Phys. Chem. C 2017, 121, 15071-15077.
C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du, Y. Gong, Y. Huang, Z. Lai, X. Zhang, L. Zheng, X. Qi, M. H. Goh, J. Wang, S. Han, X.-J. Wu, L. Gu, C. Kloc, H. Zhang, Adv. Mater. 2018, 30, 1705509.
D. Voiry, R. Fullon, J. Yang, C. de Carvalho Castro e Silva, R. Kappera, I. Bozkurt, D. Kaplan, M. J. Lagos, P. E. Batson, G. Gupta, A. D. Mohite, L. Dong, D. Er, V. B. Shenoy, T. Asefa, M. Chhowalla, Nat. Mater. 2016, 15, 1003.
E. E. Benson, H. Zhang, S. A. Schuman, S. U. Nanayakkara, N. D. Bronstein, S. Ferrere, J. L. Blackburn, E. M. Miller, J. Am. Chem. Soc. 2018, 140, 441-450.
J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu, R. Jiang, ACS Sustainable Chem. Eng. 2018, 6, 13435-13442.
S. Chen, X. Chen, G. Wang, L. Liu, Q. He, X.-B. Li, N. Cui, Chem. Mater. 2018, 30, 5404-5411.
I. H. Kwak, I. S. Kwon, H. G. Abbas, G. Jung, Y. Lee, T. T. Debela, S. J. Yoo, J.-G. Kim, J. Park, H. S. Kang, Nanoscale 2018, 10, 14726-14735.
A. Maiti, S. K. Srivastava, J. Mater. Chem. A 2018, 6, 19712-19726.
Z. Lai, A. Chaturvedi, Y. Wang, T. H. Tran, X. Liu, C. Tan, Z. Luo, B. Chen, Y. Huang, G.-H. Nam, Z. Zhang, Y. Chen, Z. Hu, B. Li, S. Xi, Q. Zhang, Y. Zong, L. Gu, C. Kloc, Y. Du, H. Zhang, J. Am. Chem. Soc. 2018, 140, 8563-8568.
Z. Liu, N. Li, C. Su, H. Zhao, L. Xu, Z. Yin, J. Li, Y. Du, Nano Energy 2018, 50, 176-181.
P. V. Sarma, C. S. Tiwary, S. Radhakrishnan, P. M. Ajayan, M. M. Shaijumon, Nanoscale 2018, 10, 9516-9524.
S.-Z. Yang, Y. Gong, P. Manchada, Y.-Y. Zhang, G. Ye, S. Chen, L. Song, S. T. Pantelides, P. M. Ajayan, M. F. Chisholm, W. Zhou, Adv. Mater. 2018, 30, 1803477.
G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169-11186.
G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15-50.
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758-1775.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
S. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 211-228.
J. Moellmann, S. Moellmann, J. Phys. Chem. C 2014, 118, 7615-7621.
W. Reckien, F. Janetzko, M. F. Peintinger, T. Bredow, J. Comput. Chem. 2012, 33, 2023-2031.
T. Hu, R. Li, J. Dong, J. Chem. Phys. 2013, 139, 174702.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
A. N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, J. Phys. Chem. C 2011, 115, 24586-24591.
L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. Wei, J. Am. Chem. Soc. 2015, 137, 2622-2627.
K. Sun, Y. Liu, Y. Pan, H. Zhu, J. Zhao, L. Zeng, Z. Liu, C. Liu, Nano Res. 2018, 11(8): 4368-4379.
D. B. Putungan, S.-H. Lin, J.-L. Kuo, Phys. Chem. Chem. Phys. 2015, 17, 21702-21708.
D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttall, J. Phys. Chem. Ref. Data 1982, 11 Suppl. 2, 2-58.
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
Q. Tang, D.-E. Jiang, ACS Catal. 2016, 6, 4953-4961.
P. Atkins Physical Chemistry. 10th ed, Oxford University Press, Oxford, U. K., 2014, pp 1-1008.
J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37.
O. C. Compton, S. T. Nguyen, Small 2010, 6, 711-723.
فهرسة مساهمة: Keywords: density functional theory; electrocatalyst; gibbs free energy; hydrogen evolution reaction; molybdenum disulfide
تواريخ الأحداث: Date Created: 20210727 Date Completed: 20211022 Latest Revision: 20211022
رمز التحديث: 20240829
DOI: 10.1002/cphc.202100038
PMID: 34313368
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-7641
DOI:10.1002/cphc.202100038