دورية أكاديمية

An interrater reliability study of gait analysis systems with the dual task paradigm in healthy young and older adults.

التفاصيل البيبلوغرافية
العنوان: An interrater reliability study of gait analysis systems with the dual task paradigm in healthy young and older adults.
المؤلفون: Klotzbier TJ; Department of Sport and Exercise Science, University of Stuttgart, Allmandring 28, 70569, Stuttgart, Germany. thomas.klotzbier@inspo.uni-stuttgart.de., Wollesen B; Department of Human Movement Science, University of Hamburg, Mollerstraße 10, 20148, Hamburg, Germany.; Biological Psychology and Neuroergonomics, TU Berlin, Fasanenstr. 1, 10623, Berlin, Germany., Vogel O; Department of Human Movement Science, University of Hamburg, Mollerstraße 10, 20148, Hamburg, Germany., Rudisch J; Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Horstmarer Landweg 62B, 48149, Münster, Germany., Cordes T; Department of Human Movement Science, University of Hamburg, Mollerstraße 10, 20148, Hamburg, Germany., Jöllenbeck T; Institute for Biomechanics, Clinic Lindenplatz, Weslarner Str. 29, 59505, Bad Sassendorf, Germany.; Department of Exercise & Health, University of Paderborn, Warburger Straße 100, 33098, Paderborn, Germany., Vogt L; Department of Sports Medicine, Goethe University Frankfurt am Main, Ginnheimer Landstr. 39, 60487, Frankfurt, Germany.
المصدر: European review of aging and physical activity : official journal of the European Group for Research into Elderly and Physical Activity [Eur Rev Aging Phys Act] 2021 Aug 03; Vol. 18 (1), pp. 17. Date of Electronic Publication: 2021 Aug 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101284836 Publication Model: Electronic Cited Medium: Print ISSN: 1813-7253 (Print) Linking ISSN: 18137253 NLM ISO Abbreviation: Eur Rev Aging Phys Act Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: Heidelberg : Springer
Original Publication: Wingate : EGREPA
مستخلص: Background and Aims: One reason for the controversial discussion of whether the dual task (DT) walking paradigm has an added value for diagnosis in clinical conditions might be the use of different gait measurement systems. Therefore, the purpose was 1) to detect DT effects of central gait parameters obtained from five different gait analysis devices in young and old adults, 2) to assess the consistency of the measurement systems, and 3) to determine if the absolut and proportional DT costs (DTC) are greater than the system-measurement error under ST.
Methods: Twelve old (72.2 ± 7.9y) and 14 young adults (28.3 ± 6.2y) walked a 14.7-m distance under ST and DT at a self-selected gait velocity. Interrater reliability, precision of the measurement and sensitivity to change were calculated under ST and DT.
Results: An age effect was observed in almost all gait parameters for the ST condition. For DT only differences for stride length (p < .029, ɳ 2 p  = .239) as well as single and double limb support (p = .036, ɳ 2 p  = .227; p = .034, ɳ 2 p  = .218) remained. The measurement systems showed a lower absolute agreement compared to consistency across all systems.
Conclusions: When reporting DT effects, the real changes in performance and random measurement errors should always be accounted for. These findings have strong implications for interpreting DT effects.
(© 2021. The Author(s).)
التعليقات: Erratum in: Eur Rev Aging Phys Act. 2022 Oct 5;19(1):24. (PMID: 36199033)
References: Faulkner KA, Redfern MS, Cauley JA, Landsittel DP, Studenski SA, Rosano C. Multitasking: association between poorer performance and a history of recurrent falls. J Am Geriatr Soc. 2007;55(4):570–6. https://doi.org/10.1111/j.1532-5415.2007.01147.x . (PMID: 10.1111/j.1532-5415.2007.01147.x17397436)
Paul SS, Ada L, Canning CG. Automaticity of walking–implications for physiotherapy practice. Phys Ther Rev. 2005;10(1):15–23. https://doi.org/10.1179/108331905X43463 . (PMID: 10.1179/108331905X43463)
Takagi D, Nishida Y, Fujita D. Age-associated changes in the level of physical activity in elderly adults. J Phys Ther Sci. 2013;27(12):3685–7. https://doi.org/10.1589/jpts.27.3685 . (PMID: 10.1589/jpts.27.3685)
Sun F, Norman IJ, While AE. Physical activity in older people: a systematic review. BMC Public Health. 2013;13(1):449. https://doi.org/10.1186/1471-2458-13-449 . (PMID: 10.1186/1471-2458-13-449236482253651278)
Tomas-Carus P, Biehl-Printes C, Pereira C, Veiga G, Costa A, Collado-Mateo D. Dual task performance and history of falls in community-dwelling older adults. Exp Geronto. 2019;120:35–9. https://doi.org/10.1016/j.exger.2019.02.015 . (PMID: 10.1016/j.exger.2019.02.015)
Nasar JL, Troyer D. Pedestrian injuries due to mobile phone use in public places. Accid Anal Prev. 2013;57:91–5. https://doi.org/10.1016/j.aap.2013.03.021 . (PMID: 10.1016/j.aap.2013.03.02123644536)
Palmiero M, Piccardi L, Boccia M, Baralla F, Cordellieri P, Sgalla R. Neural correlates of simulated driving while performing a secondary task: a review. Front Psychol. 2019;10:1045. https://doi.org/10.3389/fpsyg.2019.01045 . (PMID: 10.3389/fpsyg.2019.01045311431486521777)
Doumas M, Smolders C, Krampe RT. Task prioritization in aging: effects of sensory information on concurrent posture and memory performance. Exp Brain Res. 2008;187(2):275–81. https://doi.org/10.1007/s00221-008-1302-3 . (PMID: 10.1007/s00221-008-1302-318273609)
Lacour M, Bernard-Demanze L, Dumitrescu MM. Posture control, aging, and attention resources: models and posture-analysis methods. Neurophysiol Clin. 2008;38(6):411–21. https://doi.org/10.1016/j.neucli.2008.09.005 . (PMID: 10.1016/j.neucli.2008.09.00519026961)
Wollesen B, Voelcker-Rehage C, Regenbrecht T, Mattes K. Influence of a visual–verbal Stroop test on standing and walking performance of older adults. Neuroscience. 2016;318:166–77. https://doi.org/10.1016/j.neuroscience.2016.01.031 . (PMID: 10.1016/j.neuroscience.2016.01.03126808774)
Kahneman D. Attention and effort. Englewood Cliffs: Prentice-Hall; 1973.
Wickens CD. Processing resources and attention. Multiple-task performance; 1991. p. 3–34.
Schaefer S, Schumacher V. The interplay between cognitive and motor functioning in healthy older adults: findings from dual-task studies and suggestions for intervention. Gerontology. 2011;57(3):239–46. https://doi.org/10.1159/000322197 . (PMID: 10.1159/00032219720980735)
Lindenberger U, Marsiske M, Baltes PB. Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychol Aging. 2000;15(3):417–36. https://doi.org/10.1037/0882-7974.15.3.417 . (PMID: 10.1037/0882-7974.15.3.41711014706)
Menant JC, Schoene D, Sarofim M, Lord SR. Single and dual task tests of gait speed are equivalent in the prediction of falls in older people: a systematic review and meta-analysis. Ageing Res Rev. 2014;16:83–104. https://doi.org/10.1016/j.arr.2014.06.001 . (PMID: 10.1016/j.arr.2014.06.00124915643)
Wollesen B, Wanstrath M, Van Schooten KS, Delbaere K. A taxonomy of cognitive tasks to evaluate cognitive-motor interference on spatiotemoporal gait parameters in older people: a systematic review and meta-analysis. Eur Rev Aging Phys Act. 2019b;16(1):12. https://doi.org/10.1186/s11556-019-0218-1 . (PMID: 10.1186/s11556-019-0218-1313721866661106)
Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35(3):715–28. https://doi.org/10.1016/j.neubiorev.2010.08.008 . (PMID: 10.1016/j.neubiorev.2010.08.00820833198)
Gschwind Y, Bridenbaugh S. The role of gait analysis. Early detection of dementia and risk of falling. Der Informierte Arzt. 2011;6:39–41 Available from: https://www.tellmed.ch/include&#95;php/previewdoc.php?file&#95;id=8223 .
Beauchet O, Allali G, Sekhon H, Verghese J, Guilain S, Steinmetz JP, et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: the biomathics and Canadian gait consortiums initiative. Front Hum Neurosci. 2017 Aug;11(353):1–14. https://doi.org/10.3389/fnhum.2017.00353 . (PMID: 10.3389/fnhum.2017.00353)
Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017;55:87–93. https://doi.org/10.1016/j.gaitpost.2017.04.013 . (PMID: 10.1016/j.gaitpost.2017.04.013284338675507609)
Klotzbier TJ, Schott N. Cognitive-motor interference during walking in older adults with probable mild cognitive impairment. Front Aging Neurosci. 2017;9:350. https://doi.org/10.3389/fnagi.2017.00350 . (PMID: 10.3389/fnagi.2017.00350293217385732228)
Gomes GDC, Teixeira-Salmela LF, Freitas FASD, Fonseca MLM, Pinheiro MDB, Morais VADC. Gait performance of the elderly under dual-task conditions: review of instruments employed and kinematic parameters. Rev Bras Geriatr Gerontol. 2016;19(1):165–82. https://doi.org/10.1590/1809-9823.2016.14159 . (PMID: 10.1590/1809-9823.2016.14159)
Smith E, Cusack T, Cunningham C, Blake C. The influence of a cognitive dual task on the gait parameters of healthy older adults: a systematic review and meta-analysis. J Aging Phys Act. 2017;25(4):671–86. https://doi.org/10.1123/japa.2016-0265 . (PMID: 10.1123/japa.2016-026528253049)
Wollesen B, Mattes K, Rönnfeldt J. Influence of age, gender and test conditions on the reproducibility of dual-task walking performance. Aging Clin Exp Res. 2017;29(4):761–9. https://doi.org/10.1007/s40520-016-0664-9 . (PMID: 10.1007/s40520-016-0664-927838829)
Webster KE, Wittwer JE, Feller JA. Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture. 2005;22(4):317–21. https://doi.org/10.1016/j.gaitpost.2004.10.005 . (PMID: 10.1016/j.gaitpost.2004.10.00516274913)
Cutlip RG, Mancinelli C, Huber F, DiPasquale J. Evaluation of an instrumented walkway for measurement of the kinematic parameters of gait. Gait Posture. 2000;12(2):134–8. https://doi.org/10.1016/S0966-6362(00)00062-X . (PMID: 10.1016/S0966-6362(00)00062-X10998610)
Lee M, Song C, Lee K, Shin D, Shin S. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients. Med Sci Monit. 2014;20:1210. https://doi.org/10.12659/MSM.890658 . (PMID: 10.12659/MSM.890658250176134106927)
Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech. 2010;43(15):2999–3006. https://doi.org/10.1016/j.jbiomech.2010.07.003 . (PMID: 10.1016/j.jbiomech.2010.07.00320656291)
Bourgeois AB, Mariani B, Aminian K, Zambelli PY, Newman CJ. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture. 2014;39:436–42. https://doi.org/10.1016/j.gaitpost.2013.08.029 . (PMID: 10.1016/j.gaitpost.2013.08.029)
Lienhard K, Schneider D, Maffiuletti NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys. 2013;35(4):500–4. https://doi.org/10.1016/j.medengphy.2012.06.015 . (PMID: 10.1016/j.medengphy.2012.06.01522818403)
Lee MM, Song CH, Lee KJ, Jung SW, Shin DC, Shin SH. Concurrent validity and test-retest reliability of the OPTOGait photoelectric cell system for the assessment of spatio-temporal parameters of the gait of young adults. J Phys Ther Sci. 2014;26(1):81–5. https://doi.org/10.1589/jpts.26.81 . (PMID: 10.1589/jpts.26.81245676813927048)
Schmitz-Hübsch T, Brandt AU, Pfueller C, Zange L, Seidel A, Kühn AA. Accuracy and repeatability of two methods of gait analysis–GaitRite™ und mobility lab™–in subjects with cerebellar ataxia. Gait Posture. 2016;48:194–201. https://doi.org/10.1016/j.gaitpost.2016.05.014 . (PMID: 10.1016/j.gaitpost.2016.05.01427289221)
World Medical Association. Declaration of Helsinki, ethical principles for medical research involving human subjects. 64 nd WMA General Assembly, Fortaleza, Brazil. 2013.. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects . Accessed 1 Apr 2021.
Rudisch J, Jöllenbeck T, Vogt L, Cordes T, Klotzbier TJ, Vogel O. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters. Gait Posture. 2021;85:55–64. https://doi.org/10.1016/j.gaitpost.2021.01.013 . (PMID: 10.1016/j.gaitpost.2021.01.01333516094)
Cordes T, Bischoff LL, Schoene D, Schott N, Voelcker-Rehage C, Meixner C. A multicomponent exercise intervention to improve physical functioning, cognition and psychosocial well-being in elderly nursing home residents: a study protocol of a randomized controlled trial in the PROCARE (prevention and occupational health in long-term care) project. BMC Geriatr. 2019;19(1):369. https://doi.org/10.1186/s12877-019-1386-6 . (PMID: 10.1186/s12877-019-1386-6318703146929376)
Menz HB, Latt MD, Tiedemann A, San Kwan MM, Lord SR. Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture. 2004;20(1):20–5. https://doi.org/10.1016/S0966-6362(03)00068-7 . (PMID: 10.1016/S0966-6362(03)00068-715196515)
Plummer P, Eskes G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice. Front Hum Neurosci. 2015;9:225. https://doi.org/10.3389/fnhum.2015.00225 . (PMID: 10.3389/fnhum.2015.00225259728014412054)
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016 Jun;15(2):155–63. https://doi.org/10.1016/j.jcm.2016.02.012 . (PMID: 10.1016/j.jcm.2016.02.012273305204913118)
Mokkink LB, Terwee CB, Gibbons E, Stratford PW, Alonso J, Patrick DL, et al. Inter-rater agreement and reliability of the COSMIN (COnsensus-based standards for the selection of health status measurement instruments) checklist. BMC Med Res Methodol. 2010 Sep;10(82):1–11. https://doi.org/10.1186/1471-2288-10-82 . (PMID: 10.1186/1471-2288-10-82)
Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–38. https://doi.org/10.2165/00007256-199826040-00002 . (PMID: 10.2165/00007256-199826040-000029820922)
Hollman JH, Beckman BA, Brandt RA, Merriwether EN, Williams RT, Nordrum JT. Minimum detectable change in gait velocity during acute rehabilitation following hip fracture. J Geriatr Phys Ther. 2008;31(2):53–6. https://doi.org/10.1519/00139143-200831020-00003 . (PMID: 10.1519/00139143-200831020-0000319856550)
Hollman JH, Childs KB, McNeil ML, Mueller AC, Quilter CM, Youdas JW. Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture. 2010;32(1):23–8. https://doi.org/10.1016/j.gaitpost.2010.02.017 . (PMID: 10.1016/j.gaitpost.2010.02.01720363136)
Schwenk M, Gogulla S, Englert S, Czempik A, Hauer K. Test–retest reliability and minimal detectable change of repeated sit-to-stand analysis using one body fixed sensor in geriatric patients. Physio Meas. 2012;33(11):1931–46. https://doi.org/10.1088/0967-3334/33/11/1931 . (PMID: 10.1088/0967-3334/33/11/1931)
Faul F, Erdfelder E, Lang AG, Buchner A. G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. https://doi.org/10.3758/BF03193146 . (PMID: 10.3758/BF0319314617695343)
Tabachnick BG, Fidell LS. Using multivariate statistics 6th edn. Pearson Education Limited: New International Edition; 2013.
Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40. https://doi.org/10.1519/15184.1 . (PMID: 10.1519/15184.115705040)
Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8. https://doi.org/10.1037/0033-2909.86.2.420 . (PMID: 10.1037/0033-2909.86.2.42018839484)
Kerber KA, Ishiyama GP, Baloh RW. A longitudinal study of oculomotor function in normal older people. Neurobiol Aging. 2006;27(9):1346–53. https://doi.org/10.1016/j.neurobiolaging.2005.07.009 . (PMID: 10.1016/j.neurobiolaging.2005.07.00916122840)
Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin J. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33. https://doi.org/10.1016/j.neubiorev.2009.10.005 . (PMID: 10.1016/j.neubiorev.2009.10.00519850077)
Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000;5:91–208. https://doi.org/10.1111/j.1529-8027.2000.00026.x . (PMID: 10.1111/j.1529-8027.2000.00026.x)
Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–6. https://doi.org/10.1053/apmr.2001.24893 . (PMID: 10.1053/apmr.2001.2489311494184)
Morrison S, Colberg SR, Parson HK, Neumann S, Handel R, Vinik EJ. Walking-induced fatigue leads to increased falls risk in older adults. J Am Med Dir Assoc. 2016;17(5):402–9. https://doi.org/10.1016/j.jamda.2015.12.013 . (PMID: 10.1016/j.jamda.2015.12.013268256844842152)
Scott D, McLaughlin P, Nicholson GC, Ebeling PR, Stuart AL, Kay D. Changes in gait performance over several years are associated with recurrent falls status in community-dwelling older women at high risk of fracture. Age Ageing. 2015;44(2):287–93. https://doi.org/10.1093/ageing/afu169 . (PMID: 10.1093/ageing/afu16925362105)
Wollesen B, Voelcker-Rehage C. Differences in cognitive-motor interference in older adults while walking and performing a visual-verbal Stroop task. Front Aging Neurosci. 2019;10:426. https://doi.org/10.3389/fnagi.2018.00426 . (PMID: 10.3389/fnagi.2018.00426306870776333862)
Muhaidat J, Kerr A, Evans JJ, Skelton DA. The test–retest reliability of gait-related dual task performance in community-dwelling fallers and non-fallers. Gait Posture. 2013;38(1):43–50. https://doi.org/10.1016/j.gaitpost.2012.10.011 . (PMID: 10.1016/j.gaitpost.2012.10.01123146196)
Stoffregen TA, Hove P, Bardy BG, Riley M, Bonnet CT. Postural stabilization of perceptual but not cognitive performance. J Mot Behav. 2007;39(2):126–38. https://doi.org/10.3200/JMBR.39.2.126-138 . (PMID: 10.3200/JMBR.39.2.126-13817428758)
Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol [A]. 2001;54:1143–54. https://doi.org/10.1080/713756012 . (PMID: 10.1080/713756012)
Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull. 2006;69(3):294–305. https://doi.org/10.1016/j.brainresbull.2006.01.002 . (PMID: 10.1016/j.brainresbull.2006.01.00216564425)
Verrel J, Lövdén M, Schellenbach M, Schaefer S, Lindenberger U. Interacting effects of cognitive load and adult age on the regularity of whole-body motion during treadmill walking. Psychol Aging. 2009;24(1):75–81. https://doi.org/10.1037/a0014272 . (PMID: 10.1037/a001427219290739)
Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture. 2003;17(1):68–74. https://doi.org/10.1016/S0966-6362(02)00053-X . (PMID: 10.1016/S0966-6362(02)00053-X12535728)
Kobsar D, Charlton JM, Tse CT, Esculier JF, Graffos A, Krowchuk NM, et al. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. J Neuroeng Rehabilitation. 2020;17(62):1–21. https://doi.org/10.1186/s12984-020-00685-3 . (PMID: 10.1186/s12984-020-00685-3)
Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):34–42. https://doi.org/10.1016/j.jclinepi.2006.03.012 . (PMID: 10.1016/j.jclinepi.2006.03.01217161752)
فهرسة مساهمة: Keywords: Cognitive-motor interference; Dual task walking; Gait analysis; Minimal detectable change; Older adults; Verbal fluency
تواريخ الأحداث: Date Created: 20210804 Latest Revision: 20221005
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8336354
DOI: 10.1186/s11556-021-00271-z
PMID: 34344302
قاعدة البيانات: MEDLINE
الوصف
تدمد:1813-7253
DOI:10.1186/s11556-021-00271-z