دورية أكاديمية

TOCSY, hydrogen decoupling and computational calculations to an unequivocal structural elucidation of a new sesquiterpene derivative and identification of other constituents from Praxelis sanctopaulensis.

التفاصيل البيبلوغرافية
العنوان: TOCSY, hydrogen decoupling and computational calculations to an unequivocal structural elucidation of a new sesquiterpene derivative and identification of other constituents from Praxelis sanctopaulensis.
المؤلفون: Araújo DLO; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Ramos AVG; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Daufemback JV; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., de Souza MEV; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Moreno BP; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Fernandes CS; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Lopes AP; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Battistella AC; Programa de Pós-graduação em Processos Químicos e Biotecnológicos, Universidade Tecnológica Federal do Paraná, Toledo, PR, Brazil., Basso EA; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Visentainer JV; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Tiuman TS; Programa de Pós-graduação em Processos Químicos e Biotecnológicos, Universidade Tecnológica Federal do Paraná, Toledo, PR, Brazil., Cottica SM; Programa de Pós-graduação em Processos Químicos e Biotecnológicos, Universidade Tecnológica Federal do Paraná, Toledo, PR, Brazil., Carmo MRB; Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil., Sarragiotto MH; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil., Baldoqui DC; Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil.
المصدر: Phytochemical analysis : PCA [Phytochem Anal] 2022 Mar; Vol. 33 (2), pp. 226-238. Date of Electronic Publication: 2021 Aug 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 9200492 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1565 (Electronic) Linking ISSN: 09580344 NLM ISO Abbreviation: Phytochem Anal Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, Sussex, UK : Wiley, c1990-
مواضيع طبية MeSH: Asteraceae* , Sesquiterpenes*, Antioxidants/chemistry ; Antioxidants/pharmacology ; Chromatography, High Pressure Liquid ; Gas Chromatography-Mass Spectrometry ; Hydrogen ; Magnetic Resonance Spectroscopy ; Plant Extracts/chemistry
مستخلص: Introduction: Praxelis genus comprises 24 species, however, only two species of this genus have been chemically investigated. Here we investigated Praxelis sanctopaulensis, a native plant from Brazil, that occurs mainly in Cerrado regions.
Objective: The goal was to identify the specialised metabolites from P. sanctopaulensis, and compare with those described from Praxelis and Chromolaena species.
Methods: The phytochemical study of P. sanctopaulensis was performed through different chromatography techniques, including high-performance liquid chromatography (HPLC), gas chromatography flame ionisation detector (GC-FID), and ultra-high-performance liquid chromatography high-resolution tandem mass spectrometry (UHPLC-HRMS/MS). The structures of the compounds were established based on spectroscopic analysis, total correlated spectroscopy (TOCSY), hydrogen decoupling and computational calculations was used to an unequivocal structural elucidation of a new sesquiterpene. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP), and antimicrobial assay was performed by the microdilution method. Comparison of the flavonoids described P. sanctopaulensis was carried out using principal component analysis.
Results: The phytochemical investigation of P. sanctopaulensis led to the isolation of a pair of diastereomers, praxilone A and praxilone B. Seven known compounds were isolated from this species, another 14 fatty acids were detected in hexane fraction, and 26 compounds were identified from ethyl acetate fraction. All these compounds are being described for the first time in this species, with the exception of viridifloric acid. The ethyl acetate fraction showed potent antioxidant activity.
Conclusions: Forty-seven compounds are described from P. sanctopaulensis. The combination of different techniques of nuclear magnetic resonance (NMR) spectroscopy and computational calculations allowed the unequivocal structure elucidation of a new cadinene. The clustering analysis showed similarities between the flavonoids identified in P. sanctopaulensis and in Chromolaena species.
(© 2021 John Wiley & Sons, Ltd.)
References: Bremer K. Asteraceae: cladistics and classification. Portland: Timber Press; 1994.
King and Robinson. The genera of the Eupatorieae (Asteraceae). Monogr Syst Bot Missouri Bot Gard. 22 St Louis: Missouri Botanical Garden; 1987:581.
Xiao L, Huang Y, Wang W, Xu J, He X. Anti-neuroinflammatory benzofurans and lignans from Praxelis clematidea. Fitoterapia. 2020;140:104440.
Yang J, Zhou X, Nong X, et al. Phytochemical investigation of the flowers of Praxelis clematidea (Griseb,) R,M, King & H. Rob Nat Prod Res. 2020;1-5.
Falcão HS, Maia GLA, Bonamin F, et al. Gastroprotective mechanisms of the chloroform and ethyl acetate phases of Praxelis clematidea (Griseb,) R. M. King & H. Robinson (Asteraceae). J Nat Med. 2013;67:480-491.
Filho AAO, Fernandes HMB, Sousa JP, et al. Antifungal Potential of the Flavonoid Isolated from Praxelis clematidea RM King & Robinson. Lat Am J Pharm. 2013;31:400-404.
Maia GLA, Silva VSF, Aquino PGV, et al. Flavonoids from Praxelis clematidea RM King and Robinson modulate bacterial drug resistance. Molecules. 2011;16:4828-4835.
Weber S, Eisenreich W, Bacher A, Hartmann T. Pyrrolizidine alkaloids of the lycopsamine type: biosynthesis of trachelantic acid. Phytochemistry. 1999;50(6):1005-1014.
Bohlmann F, Wegner P, Jakupovic J, King RM. Structure and synthesis of the methyl ester of N-(acetoxy) jasmonoyl phenylalanine from Praxelis clematidea. Tetrahedron. 1984;40(13):2537-2540.
Albuquerque MRJR, Silveira ER, Lemos TLG, Souza EB, Nascimento RF, Pessoa ODL. Volatile composition of Eupatorium pauciflorum H. B. K. (Asteraceae). Flavour Fragr J. 2006;21:92-94.
Baldoqui DC, Meniqueti AB, Ramos AVG, Sarragioto MH, Carmo MRB. Chemotaxonomic Implications of Methoxy Flavonoids in Ageratina and Chromolaena. In: Ramawat K, ed. Biodiversity and Chemotaxonomy. Vol.24. Cham: Springer; 2019:137-165.
Funk VA, Susanna A, Stuessy TF, Bayer RJ. In: Funk VA, ed. Systematics, Evolution, and Biogeography of Compositae. International Association for Plant Taxonomy; 2009.
Emerenciano VP, Barbosa KO, Scotti MT, Ferreira MJPJ. Self-organizing maps in chemotaxonomic studies of Asteraceae: a Classification of Tribes using Flavonoid Data. Braz Chem Soc. 2007;18(5):891-899.
De Oliveira JAM, Bernardi DI, Balbinot RB, et al. New cadinene-sesquiterpene from Chromolaena laevigata (Lam.) R. M. King & H. Rob (Asteraceae) aerial parts and biological activities. Nat Prod Res. 2020;1-8. https://doi.org/10.1080/14786419.2020.1747456.
Balbinot RB, De Oliveira JAM, Bernardi DL, et al. Structural characterization and biological evaluation of 18-Nor-ent-labdane Diterpenoids from Grazielia gaudichaudeana. Chem Biodivers. 2019;16(5):e1800644.
Oliveira JAM, Bernardi DL, Balbinot RB, et al. Chemotaxonomic value of flavonoids in Chromolaena congesta (Asteraceae). Biochem Syst Ecol. 2017;70:7-13.
Bernardi DL, Moreno BP, De Oliveira JAM, Do Carmo MRB, Sarragiotto MH, Baldoqui DC. Chemotaxonomic implications of the absence of sesquiterpene lactones in Grazielia multifida (DC.) R.M.King & H.Rob. (Asteraceae). Biochem Syst Ecol. 2016;69:15-17.
Abreu VHR. Praxelis in Lista de Espécies da Flora do Brasil. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB114994 (accessed in November, 2019).
Grimme S, Bannwarth C, Dohm S, et al. Fully automated Quantum-Chemistry-Based computation of spin-spin-coupled nuclear magnetic resonance spectra. Angew Chem Int Ed. 2017;56(46):14763-14769.
Allouche AR. Gabedit-A graphical user interface for computational chemistry software. J Comput Chem. 2011;32(1):174-182.
Grimme S, Brandenburg JG, Bannwarth C, Hansen AJ. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. Chem Phys. 2015;143:054107.
Marenich AV, Cramer CJ, Truhlar DGJ. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Phys Chem B. 2009;113(18):6378-6396.
Kozuch S, Gruzman D, Martin JMLJ. DSD-BLYP: A general purpose double hybrid density functional including spin component scaling and dispersion correction. Phys Chem C. 2010;114(48):20801-20808.
Weigend F, Ahlrich S. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 2005;7(18):3297-3305.
Adamo C, Barone V, Adamo C, Barone VJ. Toward reliable density functional methods without adjustable parameters: The PBE0 model. Chem Phys. 1999;110:6158-6170.
Jensen F. Basis Set Convergence of Nuclear Magnetic Shielding Constants Calculated by Density Functional Methods. Chem Theory Comput. 2008;4(5):719-727.
Jensen F. The optimum contraction of basis sets for calculating spin-spin coupling constants. Theor Chem Acc. 2010;126(5-6):371-382.
Neese F. The ORCA program system. WIREs Comput Mol Sci. 2012;2(1):73-78.
Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci. 2017;8:e1327.
nmrdb.org. https://www.nmrdb.org/ (accessed in April, 2020).
Castillo AM, Patiny L, Wist J. Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J Magn Reson. 2011;209(2):123-130.
Hartman L, Lago RC. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract. 1973;22:475-476.
Maia EL, Rodrigues-Amaya D. Avaliação de um método simples e econômico para a metilação de ácidos graxos com lipídios de diversas espécies de peixes. Rev Inst Adolfo Lutz. 1993;53:27-35.
Martin CA, Oliveira CC, Visentainer JV, Matsushita M. NE. Optimization of the selectivity of a cyanopropyl stationary phase for the gas chromatographic analysis of trans fatty acids. J Chromatogr a. 2008;1194(1):111-117.
Visentainer JV. Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Quím Nova. 2012;35(2):274-279.
Ramos AVG, Peixoto JLB, Cabral MRP, et al. Chemical constituents, antiproliferative and antioxidant activities of Vernonanthura nudiflora (Less.) H. Rob. Aerial Parts. J Braz Chem Soc. 2019;30:1728-1740.
Brenton AG, Godfrey AR. Accurate Mass Measurement: Terminology and Treatment of Data. J Am Soc Mass Spectrom. 2010;21(11):1821-1835.
Chambers J. RStudio 1.0.153; Program preparing statistical graphs, Bell Laboratories, https://www.r-project.org (accessed in November, 2019).
Ferreira MMC. Quimiometria: Conceitos. Editora Unicamp: Métodos e Aplicações; 2015:493.
Boroski M, Visentainer JV, Cottica SM, De Morais DR. Princípios e Métodos Analíticos. Curitiba, Brasil: Appris; 2015.
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70-76.
CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard - Ninth Edition, CLSI document M07-A9. PA, Clinical and Laboratory Standards Institute: Wayne; 2012.
Ebajo VD Jr, Brkljača R, Urban S, Ragasa CY. Chemical constituents of Hoya buotii Kloppenb. J Appl Pharm Sci. 2015;5:69-72.
Moura ACS, Vilegas W, Santos LC. Identificação de alguns constituintes químicos de Indigofera hirsuta linn, (Fabaceae) por clae-ies-em (tof) e avaliação da atividade antirradicalar, (Material Suplementar). Quím Nova. 2011;34(7):1136-1140.
Nugroho A, Lim S-C, KarkI S, Choi JS, Park H-J. Simultaneous quantification and validation of new peroxynitrite scavengers from Artemisia iwayomogi. Pharm Biol. 2015;53(5):653-661.
Rodrigues ED, Silva DB, Oliveira DCR, Silva GV. DOSY NMR applied to analysis of flavonoid glycosides from Bidens sulphurea. J Magn Reson Chem. 2009;47(12):1095-1100.
Das NM, Mohan VR, Parthipan BP. Isolation, purification and characterization of arbutin from Cleidion nitidum (Muell, − Arg,) Thw, ex Kurz, (Euphorbiaceae). Int J Sci Res. 2016;5:1549-1554.
Li X, Xu H, Zhao G, et al. Highly efficient synthesis of arbutin esters catalyzed by whole cells of Candida parapsilosis. RSC Adv. 2018;8(18):10081-10088.
Wallaart ET, Uden WV, Lubberink HGM, Woerdenbag HJ, Pras N, Quax WJ. Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin. J Nat Prod. 1999;62(3):430-433.
Brown GD. The Biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules. 2010;15(11):7603-7698.
Chen H, Zhou B, Yang J, et al. Essential oil derived from Eupatorium adenophorum Spreng. mediates anticancer effect by inhibiting STAT3 and AKT activation to induce apoptosis in hepatocellular carcinoma. Front Pharmacol. 2018;9:483. https://doi.org/10.3389/fphar.2018.00483.
Kim H, Jung Y, Jeon SH, Hwang G-S, Ahn YG. Rapid characterization and discovery of chemical markers for discrimination of Xanthii Fructus by gas chromatography coupled to mass spectrometry. Molecules. 2019;24(22):4079. https://doi.org/10.3390/molecules24224079.
Sommerfeld M. Trans Unsaturated fatty acids in natural products and processed foods. Prog Lipid Res. 1983;22(3):221-233.
Chen Y, Yu H, Wu H, et al. Characterization and quantification by LC-MS/MS of the Chemical components of the heating products of the flavonoids extract in Pollen Typhae for transformation rule exploration. Molecules. 2015;20(10):18352-18366.
Tiberti LA, Yariwake JH, Ndjoko K, Hostettmann KJ. On-Line LC/UV/MS analysis of flavonols in the three apple varieties most widely cultivated in brazil. Braz Chem Soc. 2007;18(1):100-105.
Ouyang H, Li T, He M, et al. Identification and quantification analysis on the chemical constituents from traditional mongolian medicine Flos Scabiosae Using UHPLC-DAD-Q-TOF-MS Combined with UHPLC-QqQ-MS. J Chromatogr Sci. 2016;54(6):1028-1036.
Wang Y, Vorsa N, Harrington PB, Chen PJ. Nontargeted metabolomic study on variation of phenolics in different cranberry cultivars using UPLC-IM - HRMS. Agric Food Chem. 2018;66(46):12206-12216.
Li Z-H, Guo H, Xu W-B, et al. Rapid identification of flavonoid constituents directly from ptp1b inhibitive extract of raspberry (Rubus idaeus L.) leaves by HPLC-ESI-QTOF-MS-MS. J Chromatogr Sci. 2016;54(5):805-810.
Liu P, Lindstedt A, Markkinen N, Sinkkonen J, Suomela J-P, Yang BB. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). J Agric Food Chem. 2014;62(49):12015-12026.
Kang J, Price WE, Ashton J, Tapsel LC, Johnson S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum whole grains by LC-ESI-MS. Food Chem. 2016;211:215-226.
Jucá MM, Cysne Filho FMS, Almeida JC, et al. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2020;34(5):692-705.
Santos EL, Maia BHLNS, Ferriani AP, Teixeira SD. Flavonoids: Classification, Biosynthesis and Chemical Ecology. In: Flavonoids - From Biosynthesis to Human Health. 1st ed. IntechOpen; 2017. https://doi.org/10.5772/67861, https://www.intechopen.com/chapters/54574.
Khalid M, Rahman S-UR, Bilal M, Dan-feng H. Role of flavonoids in plant interactions with the environment and against human pathogens - A review. J Integr Agric. 2019;18(1):211-230.
معلومات مُعتمدة: CNPq 465637/2014-0 INCT BioNat; Conselho Nacional de Desenvolvimento Científico e Tecnológico; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Eupatorieae; NMR; chemometric analysis; dereplication study; flavonoids
المشرفين على المادة: 0 (Antioxidants)
0 (Plant Extracts)
0 (Sesquiterpenes)
7YNJ3PO35Z (Hydrogen)
تواريخ الأحداث: Date Created: 20210807 Date Completed: 20220303 Latest Revision: 20220303
رمز التحديث: 20231215
DOI: 10.1002/pca.3082
PMID: 34363263
قاعدة البيانات: MEDLINE