دورية أكاديمية

Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage.

التفاصيل البيبلوغرافية
العنوان: Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage.
المؤلفون: Stavila V; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA., Li S; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA., Dun C; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Marple MAT; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA., Mason HE; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA., Snider JL; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA., Reynolds JE 3rd; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA., El Gabaly F; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA., Sugar JD; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA., Spataru CD; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA., Zhou X; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA., Dizdar B; University of Missouri-St. Louis, Department of Physics and Astronomy, One University Blvd, St. Louis, MO, 63121, USA.; University of Chicago, Chicago, IL, 60637, USA., Majzoub EH; University of Missouri-St. Louis, Department of Physics and Astronomy, One University Blvd, St. Louis, MO, 63121, USA., Chatterjee R; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Yano J; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Schlomberg H; Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany.; University of Munich (LMU), Department of Chemistry, Butenandtstraße 5-13, 81377, München, Germany., Lotsch BV; Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany.; University of Munich (LMU), Department of Chemistry, Butenandtstraße 5-13, 81377, München, Germany., Urban JJ; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Wood BC; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA., Allendorf MD; Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2021 Dec 01; Vol. 60 (49), pp. 25815-25824. Date of Electronic Publication: 2021 Oct 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مستخلص: The highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized covalent triazine framework (AlH 3 @CTF-bipyridine). This material and the counterpart AlH 3 @CTF-biphenyl rapidly desorb H 2 between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, 27 Al MAS NMR and 27 Al{ 1 H} REDOR experiments, and computational spectroscopy reveal that AlH 3 @CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum. DFT calculations and EPR measurements support an unconventional mechanism whereby strong AlH 3 binding to bipyridine results in single-electron transfer to form AlH 2 (AlH 3 ) n clusters. The resulting size-dependent charge redistribution alters the dehydrogenation/rehydrogenation thermochemistry, suggesting a novel strategy to enable reversibility in high-capacity metal hydrides.
(© 2021 Wiley-VCH GmbH.)
References: .
in Road Map to a US Hydrogen Economy, http://www.fchea.org/us-hydrogen-study, 2020;.
in Germany's National Hydrogen Strategy, https://www.bmwi.de/Redaktion/EN/Publikationen/Energie/the-national-hydrogen-strategy.html, Berlin, 2020.
R. Moradi, K. M. Groth, Int. J. Hydrogen Energy 2019, 44, 12254-12269.
 .
X. Liu, G. S. McGrady, H. W. Langmi, C. M. Jensen, J. Am. Chem. Soc. 2009, 131, 5032-5033;.
J. Graetz, J. Wegrzyn, J. J. Reilly, J. Am. Chem. Soc. 2008, 130, 17790-17794.
B. M. Wong, D. Lacina, I. M. B. Nielsen, J. Graetz, M. D. Allendorf, J. Phys. Chem. C 2011, 115, 7778-7786.
J. Graetz, B. C. Hauback, MRS Bull. 2013, 38, 473-479.
 .
H. Saitoh, A. Machida, Y. Katayama, K. Aoki, Appl. Phys. Lett. 2008, 93, 151918;.
J. Graetz, S. Chaudhuri, Y. Lee, T. Vogt, J. T. Muckerman, J. J. Reilly, Phys. Rev. B 2006, 74, 214114.
 .
J. Graetz, S. Chaudhuri, J. Wegrzyn, Y. Celebi, J. R. Johnson, W. Zhou, J. J. Reilly, J. Phys. Chem. C 2007, 111, 19148-19152;.
D. Lacina, J. Wegrzyn, J. Reilly, Y. Celebi, J. Graetz, Energy Environ. Sci. 2010, 3, 1099-1105;.
C. B. Ni, L. Yang, J. T. Muckerman, J. Graetz, J. Phys. Chem. C 2013, 117, 2628-2634;.
L. Sandig-Predzymirska, J. Ortmeyer, J. Wagler, E. Brendler, F. Habermann, M. Anders, M. Felderhoff, F. Mertens, Dalton Trans. 2020, 49, 17689-17698.
A. Schneemann, J. L. White, S. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, V. Stavila, Chem. Rev. 2018, 118, 10775-10839.
C. L. Carr, W. Jayawardana, H. Zou, J. L. White, F. El Gabaly, M. S. Conradi, V. Stavila, M. D. Allendorf, E. H. Majzoub, Chem. Mater. 2018, 30, 2930-2938.
V. Stavila, R. K. Bhakta, T. M. Alam, E. H. Majzoub, M. D. Allendorf, ACS Nano 2012, 6, 9807-9817.
B. C. Wood, V. Stavila, N. Poonyayant, T. W. Heo, K. G. Ray, L. E. Klebanoff, T. J. Udovic, J. R. I. Lee, N. Angboonpong, J. D. Sugar, P. Pakawatpanurut, Adv. Mater. Interfaces 2017, 4, 1600803.
Y. Cho, S. Li, J. L. Snider, M. A. T. Marple, N. A. Strange, J. D. Sugar, F. El Gabaly, A. Schneemann, S. Kang, M.-h. Kang, H. Park, J. Park, L. F. Wan, H. E. Mason, M. D. Allendorf, B. C. Wood, E. S. Cho, V. Stavila, ACS Nano 2021, 15, 10163-10174.
 .
P. K. Prabhakaran, L. Catoire, J. Deschamps, Microporous Mesoporous Mater. 2017, 243, 214-220;.
L. Wang, A. Rawal, K. F. Aguey-Zinsou, Chem. Eng. Sci. 2019, 194, 64-70.
S. J. Lyle, P. J. Waller, O. M. Yaghi, Trends Chem. 2019, 1, 172-184.
H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 974.
M. Kalaj, S. M. Cohen, ACS Cent. Sci. 2020, 6, 1046-1057.
 .
A. Rossin, G. Tuci, L. Luconi, G. Giambastiani, ACS Catal. 2017, 7, 5035-5045;.
A. Schneemann, L. F. Wan, A. S. Lipton, Y. S. Liu, J. L. Snider, A. A. Baker, J. D. Sugar, C. D. Spataru, J. H. Guo, T. S. Autrey, M. Jorgensen, T. R. Jensen, B. C. Wood, M. D. Allendorf, V. Stavila, ACS Nano 2020, 14, 10294-10304;.
Y. J. Wu, C. Y. Wang, ACS Sustainable Chem. Eng. 2019, 7, 16013-16025.
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450-3453;.
Angew. Chem. 2008, 120, 3499-3502.
S. Hug, M. E. Tauchert, S. Li, U. E. Pachmayr, B. V. Lotsch, J. Mater. Chem. 2012, 22, 13956-13964.
P. Kuhn, A. Thomas, M. Antonietti, Macromolecules 2009, 42, 319-326.
S. K. Konovalov, B. M. Bulychev, Inorg. Chem. 1995, 34, 172-175.
A. V. Bavykina, M. G. Goesten, F. Kapteijn, M. Makkee, J. Gascon, ChemSusChem 2015, 8, 809-812.
E. Ashby, G. Brendel, H. Redman, Inorg. Chem. 1963, 2, 499-504.
S. Muto, K. Tatsumi, K. Ikeda, S. Orimo, J. Appl. Phys. 2009, 105, 123514.
J. L. White, A. J. E. Rowberg, L. F. Wan, S. Kang, T. Ogitsu, R. D. Kolasinski, J. A. Whaley, A. A. Baker, J. R. I. Lee, Y.-S. Liu, L. Trotochaud, J. Guo, V. Stavila, D. Prendergast, H. Bluhm, M. D. Allendorf, B. C. Wood, F. El Gabaly, ACS Appl. Mater. Interfaces 2019, 11, 4930-4941.
H. Li, A. Belkind, F. Jansen, Z. Orban, Surf. Coat. Technol. 1997, 92, 171-177.
S.-J. Hwang, R. C. Bowman, J. Graetz, J. J. Reilly, W. Langley, C. M. Jensen, J. Alloys Compd. 2007, 446-447, 290-295.
V. P. Tarasov, G. A. Kirakosyan, Russ. J. Inorg. Chem. 2008, 53, 2048-2081.
A. R. Ferreira, E. Küçükbenli, A. A. Leitão, S. de Gironcoli, Phys. Rev. B 2011, 84, 235119.
S. K. Lee, S. B. Lee, S. Y. Park, Y. S. Yi, C. W. Ahn, Phys. Rev. Lett. 2009, 103, 095501.
P. Vajeeston, P. Ravindran, H. Fjellvåg, J. Alloys Compd. 2011, 509, S662-S666.
T. B. Faust, D. M. D'Alessandro, RSC Adv. 2014, 4, 17498-17512.
W. Kaim, J. Am. Chem. Soc. 1984, 106, 1712-1716.
J. Ortmeyer, A. Bodach, L. Sandig-Predzymirska, B. Zibrowius, F. Mertens, M. Felderhoff, ChemPhysChem 2019, 20, 1360-1368.
J. Graetz, J. J. Reilly, V. A. Yartys, J. P. Maehlen, B. M. Bulychev, V. E. Antonov, B. P. Tarasov, I. E. Gabis, J. Alloys Compd. 2011, 509, S517-S528.
 .
Y. R. Zhao, M. Han, H. X. Wang, C. C. Chen, J. Chen, Inorg. Chem. Front. 2016, 3, 1536-1542;.
L. Wang, A. Rawal, M. Z. Quadir, K. F. Aguey-Zinsou, Int. J. Hydrogen Energy 2017, 42, 14144-14153;.
P. Ngene, M. H. W. Verkuijlen, C. Barre, A. P. M. Kentgens, P. E. de Jongh, Nano Energy 2016, 22, 169-178.
L. Ye, W. Fitzhugh, E. Gil-González, Y. Wang, Y. Su, H. Su, T. Qiao, L. Ma, H. Zhou, E. Hu, X. Li, Adv. Energy Mater. 2020, 10, 2001569.
S. Ratha, A. K. Samantara, K. K. Singha, A. S. Gangan, B. Chakraborty, B. K. Jena, C. S. Rout, ACS Appl. Mater. Interfaces 2017, 9, 9640-9653.
Z. Zhang, B. Zandkarimi, A. N. Alexandrova, Acc. Chem. Res. 2020, 53, 447-458.
معلومات مُعتمدة: Office of Energy Efficiency and Renewable Energy
فهرسة مساهمة: Keywords: coordination chemistry; covalent triazine frameworks; hydrides; hydrogen storage; nanoconfinement
تواريخ الأحداث: Date Created: 20210830 Latest Revision: 20211125
رمز التحديث: 20221213
DOI: 10.1002/anie.202107507
PMID: 34459093
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202107507