دورية أكاديمية

Defying death: incorporating fossils into the phylogeny of the complex thalloid liverworts (Marchantiidae, Marchantiophyta) confirms high order clades but reveals discrepancies in family-level relationships.

التفاصيل البيبلوغرافية
العنوان: Defying death: incorporating fossils into the phylogeny of the complex thalloid liverworts (Marchantiidae, Marchantiophyta) confirms high order clades but reveals discrepancies in family-level relationships.
المؤلفون: Flores JR; Finnish Museum of Natural History (Botany), University of Helsinki, PO Box 7, Helsinki, FI-00014, Finland., Bippus AC; Department of Botany and Plant Pathology, Oregon State University, 2701 SW Campus Way, Corvallis, OR, 97331, USA., Suárez GM; Unidad Ejecutora Lillo (CONICET - Fundación Miguel Lillo), Miguel Lillo 251, San Miguel de Tucumán, Tucumán, 4000, Argentina.; Facultad de Ciencias Naturales, Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, Tucumán, 4000, Argentina., Hyvönen J; Finnish Museum of Natural History (Botany), University of Helsinki, PO Box 7, Helsinki, FI-00014, Finland.; Organismal and Evolutionary Biology, Viikki Plant Science Centre, University of Helsinki, PO Box 65, Helsinki, FI-00014, Finland.
المصدر: Cladistics : the international journal of the Willi Hennig Society [Cladistics] 2021 Jun; Vol. 37 (3), pp. 231-247. Date of Electronic Publication: 2020 Nov 09.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 9881057 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-0031 (Electronic) Linking ISSN: 07483007 NLM ISO Abbreviation: Cladistics Subsets: MEDLINE
أسماء مطبوعة: Publication: <2014-> : Hoboken, NJ : John Wiley & Sons
Original Publication: London : Published for the Willi Hennig Society by Academic Press
مواضيع طبية MeSH: Biodiversity* , Fossils* , Genome, Plant* , Genome, Plastid* , Phylogeny*, Hepatophyta/*physiology, Hepatophyta/classification ; Hepatophyta/genetics ; Humans
مستخلص: In recent years, the use of extensive molecular and morphological datasets has clarified the phylogenetic relationships among the orders of complex thalloid liverworts (Marchantiidae). However, previous studies excluded extinct taxa; thereby, undersampling the actual taxonomic diversity of the group. Here, we conducted a total-evidence analysis of Marchantiidae incorporating fossils. The combined dataset consisted of 11 genes-sampled from the nuclear, mitochondrial and plastid genomes-and 128 morphological characters. Sixty-two species, representing all classes and orders within Marchantiophyta and genera within Marchantiidae were included in the analyses. Six fossils were scored from literature: two assigned to the outgroup (Metzgeriothallus sharonae and Pallaviciniites sandaolingensis) and four to the ingroup (Marchantites cyathodoides, M. huolinhensis, Ricciopsis ferganica and R. sandaolingensis). Tree searches were conducted using parsimony as the optimality criterion. Clade sensitivity was assessed across a wide range of weighting regimes. Also, we evaluated the influence of fossils on the inferred topologies and branch support. Our results were congruent with previously inferred clades above the order level: Neohodgsoniales was sister to a clade formed by Sphaerocarpales and Marchantiales. However, relationships among families within Marchantiales contradicted recent studies. For instance, a clade consisting of Monosoleniaceae, Wiesnerellaceae and Targioniaceae was sister to the morphologically simple taxa instead of being nested within them as in previous studies. Novel synapomorphies were found for several clades within Marchantiales. Outgroup fossils were more influential than Marchantiidae fossils on overall topologies and branch support values. Except for a single weighting scheme, sampling continuous characters and down-weighting characters improved fossil stability. Ultimately, our results challenge the widespread notion that bryophyte fossils are problematic for phylogenetic inference.
(© The Willi Hennig Society 2020.)
References: Anderson, H. 1976. A review of the Bryophyta from the upper Triassic Molteno Formation, Karoo Basin, South Africa. Palaeontol. Afr. 30, 21-30.
Atkinson, B. 2018. The critical role of fossils in inferring deep-node phylogenetic relationships and macroevolutionary patterns in Cornales. Am. J. Bot. 105, 1-11.
Bell, D., Lin, Q., Gerelle, W.K., Joya, S., Chang, Y., Taylor, Z.N., Rothfels, C.J., Larsson, A., Villarreal, J.C., Li, F.W., Pokorny, L., Szövényi, P., Crandall-Stotler, B.J., DeGironimo, L., Floyd, S.K., Beerling, D.J., Deyholos, M.K., von Konrat, M., Ellis, S., Shaw, A.J., Chen, T., Wong, G.K.S., Stevenson, D.W., Palmer, J.D. and Graham, S.W., 2020. Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. Am. J. Bot. 107, 91-115.
Benton, M.J., 1995. Diversification and extinction in the history of life. Science 268, 52-58.
Bippus, A.C., Escapa, I.H. and Tomescu, A.M.F., 2018. Wanted dead or alive (probably dead): stem group Polytrichaceae. Am. J. Bot. 105, 1-21.
Bippus, A.C., Stockey, R.A., Rothwell, G.W. and Tomescu, A.M.F., 2017. Extending the fossil record of Polytrichaceae: early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island. Am. J. Bot. 104, 584-597.
Bischler, H., 1998. Systematics and evolution of the genera of the Marchantiales. Bryophyt. Bibl. 51, 1-201.
Bischler, H., Gradstein, S., Jovet-Ast, S., Long, D. and Salazar-Allen, N., 2005. Marchantiidae. Flora Neotrop. 97, 1-262.
Bleidorn, C., 2017. Sources of error and incongruence in phylogenomic analyses. In: Bleidorn, C. (Ed.), Phylogenomics. Springer International Publishing, Cham, pp. 173-193.
Blomberg S. P., Garland T., Ives A. R. (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57 (4), 717-745. http://dx.doi.org/10.1111/j.0014-3820.2003.tb00285.x.
Boisselier-Dubayle, M., Lambourdière, J. and Bischler, H., 2002. Molecular phylogenies support multiple morphological reductions in the liverwort subclass Marchantiidae (Bryophyta). Mol. Phylogenet. Evol. 24, 66-77.
Brandley, M.C., Warren, D.L., Leaché, A.D. and Mcguire, J.A., 2009. Homoplasy and clade support. Syst. Biol. 58, 184-198.
Cobbett, A., Wilkinson, M. and Wills, M.A., 2007. Fossils impact as hard as living taxa in parsimony analyses of morphology. Syst. Biol. 56, 753-766.
Coiro, M., Chomicki, G. and Doyle, J.A., 2018. Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales. Paleobiology 44, 490-510.
Cox, C.J., 2018. Land plant molecular phylogenetics: a review with comments on evaluating incongruence among phylogenies. Crit. Rev. Plant Sci. 37, 113-127.
Crandall-Stotler, B.J., Forrest, L.L. and Stotler, R.E., 2005. Evolutionary trends in the simple thalloid liverworts (Marchantiophyta, Jungermanniopsida subclass Metzgeriidae). Taxon 54, 299-316.
Crandall-Stotler, B.J. and Stotler, R.E., 2000. Morphology and classification of the Marchantiophyta. In: Shaw, A. and Goffinet, B. (Eds.), Bryophyte Biology. Cambridge University Press, Cambridge, pp. 21-70.
Crandall-Stotler, B.J., Stotler, R.E. and Long, D., 2009. Phylogeny and classification of the Marchantiophyta. Edinburgh J. Bot. 66, 155.
Davis, J.I., 1993. Character removal as a means for assessing stability of clades. Cladistics 9, 201-210.
Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A. and Rowe, T., 1989. The importance of fossils in phylogeny reconstruction. Annu. Rev. Ecol. Syst. 20, 431-460.
Duckett, J., Ligrone, R. and Renzaglia, K., 2014. Pegged and smooth rhizoids in complex thalloid liverworts (Marchantiopsida): structure, function and evolution. Bot. J. Linn. Soc. 174, 68-92.
Escapa, I.H. and Catalano, S.A., 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. Int. J. Plant Sci. 174, 1153-1170.
Flores, J.R., Catalano, S.A., Muñoz, J. and Suárez, G.M., 2017. Combined phylogenetic analysis of the subclass Marchantiidae (Marchantiophyta): towards a robustly diagnosed classification. Cladistics, 34, 1-25.
Flores, J.R., Suárez, G.M. and Hyvönen, J., 2020. Reassessing the role of morphology in bryophyte phylogenetics: combined data improves phylogenetic inference despite character conflict. Mol. Phylogenet. Evol. 143, 106662.
Forrest, L.L., Davis, E.C., Long, D.G., Crandall-Stotler, B.J., Clark, A. & Hollingsworth, M.L., 2006. Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist 109, 303-334.
Gernandt, D.S., Holman, G., Campbell, C., Parks, M., Mathews, S., Raubeson, L.A., Liston, A., Stockey, R.A. and Rothwell, G.W., 2016. Phylogenetics of extant and fossil Pinaceae: methods for increasing topological stability. Botany 94, 863-884.
Goffinet, B., Buck, W.R. & Shaw, A.J., 2009. Morphology, anatomy, and classification of the Bryophyta. In: Goffinet, B. and Shaw, J. (Eds.), Bryophyte Biology. Cambridge University Press, Cambridge, pp. 55-138.
Goffinet, B. & Shaw, A.J., 2009. Bryophyte Biology. Cambridge University Press, Cambridge.
Goloboff, P.A., 1993. Estimating character weights during tree search. Cladistics 9, 83-91.
Goloboff, P.A., 1999. Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415-428.
Goloboff, P.A., 2008. Calculating SPR distances between trees. Cladistics 22, 589-601.
Goloboff, P.A., 2014. Extended implied weighting. Cladistics 30, 260-272.
Goloboff, P.A., Carpenter, J.M., Arias, J.S. and Miranda Esquivel, D.R., 2008a. Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24, 758-773.
Goloboff, P.A. and Catalano, S.A., 2012. GB-to-TNT: facilitating creation of matrices from GenBank and diagnosis of results in TNT. Cladistics 28, 503-513.
Goloboff, P.A. and Catalano, S.A., 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221-238.
Goloboff, P.A., Farris, J.S., Källersjö, M., Oxelman, B., Ramírez, M.J. and Szumik, C.A., 2003. Improvements to resampling measures of group support. Cladistics 19, 324-332.
Goloboff, P.A., Farris, J.S. and Nixon, K.C., 2008b. TNT, a free program for phylogenetic analysis. Cladistics 24, 774-786.
Goloboff, P.A., Pittman, M., Pol, D. and Xu, X., 2019. Morphological data sets fit a common mechanism much more poorly than DNA sequences and call into question the Mkv model. Syst. Biol. 68, 494-504.
Gould, S.J., 1989. Wonderful Life: The Burgess Shale and the Nature of History. W. W. Norton & Co., New York, NY.
Gould, S.J., 1994. The evolution of life on the earth. Sci. Am. 271, 84-91.
Hässel de Menéndez, G.G., 1963. Estudio de las Anthocerotales y Marchantiales de la Argentina. Opera Lilloana 7, 1-297.
Heath, T.A., Hedtke, S.M. and Hillis, D.M., 2008. Taxon sampling and the accuracy of phylogenetic analyses. J. Syst. Evol. 46, 239-257.
Hendrixson, B.E. and Bond, J.E., 2009. Evaluating the efficacy of continuous quantitative characters for reconstructing the phylogeny of a morphologically homogeneous spider taxon (Araneae, Mygalomorphae, Antrodiaetidae, Antrodiaetus). Mol. Phylogenet. Evol. 53, 300-313.
Hernick, L.V.A., Landing, E. and Bartowski, K.E., 2008. Earth’s oldest liverworts Metzgeriothallus sharonae sp. nov. from the middle Devonian (Givetian) of eastern New York. USA. Rev. Palaeobot. Palynol. 148, 154-162.
Hillis, D.M., 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst. Biol. 47, 3-8.
Hilton, J. and Bateman, R.M., 2006. Pteridosperms are the backbone of seed-plant phylogeny 1. J. Torrey Bot. Soc. 133, 119-168.
Huelsenbeck, J.P. and Hillis, D.M., 1993. Success of phylogenetic methods in the four taxon case. Syst. Biol. 42, 247-264.
Jovet-Ast, S., 1991. Riccia (Hépatiques, Marchantiales) d’Amérique Latine. Taxons du sous-genre Riccia. Cryptogam. Bryol. Lichenol. 12, 189-370.
Katoh, K. & Toh, H., 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286-298.
King, B., Qiao, T., Lee, M.S.Y., Zhu, M. and Long, J.A., 2017. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst. Biol. 66, 499-516.
Kluge, A., 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38, 7-25.
Krassilov, V.A. and Schuster, R.M., 1984. Paleozoic and mesozoic fossils. In: Schuster, R. (Ed.), New Manual of Bryology 2. Hattori Botanical Laboratory, Tokyo, pp. 1172-1193.
Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., Deyholos, M.K., Gitzendanner, M.A., Graham, S.W., Grosse, I., Li, Z., Melkonian, M., Mirarab, S., Porsch, M., Quint, M., Rensing, S.A., Soltis, D.E., Soltis, P.S., Stevenson, D.W., Ullrich, K.K., Wickett, N.J., DeGironimo, L., Edger, P.P., Jordon-Thaden, I.E., Joya, S., Liu, T., Melkonian, B., Miles, N.W., Pokorny, L., Quigley, C., Thomas, P., Villarreal, J.C., Augustin, M.M., Barrett, M.D., Baucom, R.S., Beerling, D.J., Benstein, R.M., Biffin, E., Brockington, S.F., Burge, D.O., Burris, J.N., Burris, K.P., Burtet-Sarramegna, V., Caicedo, A.L., Cannon, S.B., Çebi, Z., Chang, Y., Chater, C., Cheeseman, J.M., Chen, T., Clarke, N.D., Clayton, H., Covshoff, S., Crandall-Stotler, B.J., Cross, H., DePamphilis, C.W., Der, J.P., Determann, R., Dickson, R.C., Di Stilio, V.S., Ellis, S., Fast, E., Feja, N., Field, K.J., Filatov, D.A., Finnegan, P.M., Floyd, S.K., Fogliani, B., García, N., Gâteblé, G., Godden, G.T., Goh, F., Qi, Y., Greiner, S., Harkess, A., Heaney, J.M., Helliwell, K.E., Heyduk, K., Hibberd, J.M., Hodel, R.G.J., Hollingsworth, P.M., Johnson, M.T.J., Jost, R., Joyce, B., Kapralov, M.V., Kazamia, E., Kellogg, E.A., Koch, M.A., Von Konrat, M., Könyves, K., Kutchan, T.M., Lam, V., Larsson, A., Leitch, A.R., Lentz, R., Li, F.-W., Lowe, A.J., Ludwig, M., Manos, P.S., Mavrodiev, E., McCormick, M.K., McKain, M., McLellan, T., McNeal, J.R., Miller, R.E., Nelson, M.N., Peng, Y., Ralph, P., Real, D., Riggins, C.W., Ruhsam, M., Sage, R.F., Sakai, A.K., Scascitella, M., Schilling, E.E., Schlösser, E.-M., Sederoff, H., Servick, S., Sessa, E.B., Shaw, A.J., Shaw, S.W., Sigel, E.M., Skema, C., Smith, A.G., Smithson, A., Stewart, C.N., Stinchcombe, J.R., Szövényi, P., Tate, J.A., Tiebel, H., Trapnell, D., Villegente, M., Wang, C.-N., Weller, S.G., Wenzel, M., Weststrand, S., Westwood, J.H., Whigham, D.F., Wu, S., Wulff, A.S., Yang, Y., Zhu, D., Zhuang, C., Zuidof, J., Chase, M.W., Pires, J.C., Rothfels, C.J., Yu, J., Chen, C., Chen, L., Cheng, S., Li, J., Li, R., Li, X., Lu, H., Ou, Y., Sun, X., Tan, X., Tang, J., Tian, Z., Wang, F., Wang, J., Wei, X., Xu, X., Yan, Z., Yang, F., Zhong, X., Zhou, F., Zhu, Y., Zhang, Y., Ayyampalayam, S., Barkman, T.J., Nguyen, N., Matasci, N., Nelson, D.R., Sayyari, E., Wafula, E.K., Walls, R.L., Warnow, T., An, H., Arrigo, N., Baniaga, A.E., Galuska, S., Jorgensen, S.A., Kidder, T.I., Kong, H., Lu-Irving, P., Marx, H.E., Qi, X., Reardon, C.R., Sutherland, B.L., Tiley, G.P., Welles, S.R., Yu, R., Zhan, S., Gramzow, L., Theißen, G. and Wong, G.K.-S., 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685.
Lewis, P.O., 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913-925.
Li, R., Li, X., Wang, H. and Sun, B., 2019. Ricciopsis sandaolingensis sp. nov., a new fossil bryophyte from the Middle Jurassic Xishanyao Formation in the Turpan-Hami Basin, Xinjiang, Northwest China. Palaeontol. Electron. 22, 1-11.
Li R., Sun B., Wang H., He Y., Yang G., Yan D., Lin Z. (2014) Marchantites huolinhensis sp. nov. (Marchantiales) - A new fossil liverwort with gemma cups from the Lower Cretaceous of Inner Mongolia, China. Cretaceous Research, 50 16-26. http://dx.doi.org/10.1016/j.cretres.2014.03.007.
Li, R.Y., Wang, X.L., Chen, J.W., Deng, S.H., Wang, Z.X., Dong, J.L. and Sun, B.N., 2016. A new thalloid liverwort: Pallaviciniites sandaolingensis sp. nov. from the middle Jurassic of Turpan-Hami Basin, NW China. Palaont. Z. 90, 389-397.
Lipscomb, D.L., 1992. Parsimony, homology and the analysis of multistate characters. Cladistics 8, 45-65.
Long, D.G., Forrest, L.L. and Villarreal, J.C., 2016a. Taxonomic changes in Marchantiaceae, Corsiniaceae and Cleveaceae (Marchantiidae, Marchantiophyta). Phytotaxa 252, 77-80.
Long, D.G., Forrest, L.L. and Villarreal, J.C., 2016b. The genus Aitchisoniella Kashyap (Marchantiopsida, Cleveaceae) new to China, and its taxonomic placement. J. Bryol. 38, 308-311.
Mamontov, Y.S. and Ignatov, M.S., 2019. How to rely on the unreliable: examples from Mesozoic bryophytes of Transbaikalia. J. Syst. Evol. 57, 339-360.
Mickevich, M.F. and Farris, J.S., 1981. The implications of congruence in Menidia. Syst. Zool. 30, 351-370.
Moisan, P., Voigt, S., Schneider, J.W. and Kerp, H., 2012. New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Rev. Palaeobot. Palynol. 187, 29-37.
Nixon, K.C. and Carpenter, J.M., 1996. On simultaneous analysis. Cladistics 12, 221-241.
Novacek, M.J., 1992. Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Syst. Biol. 41, 58-73.
O’Reilly, J.E., Puttick, M.N., Parry, L., Tanner, A.R., Tarver, J.E., Fleming, J., Pisani, D. and Donoghue, P.C.J. 2016. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol. Lett. 12, 20160081.
Pol, D. and Escapa, I.H., 2009. Unstable taxa in cladistic analysis: identification and the assessment of relevant characters. Cladistics 25, 515-527.
Renzaglia, K.S., Villarreal, J.C. and Garbary, D.J., 2019. Morphology supports the setaphyte hypothesis: mosses plus liverworts form a natural group. Bryophyta. Divers. Evol. 40, 11.
Rothwell, G.W., 1999. Fossils and ferns in the resolution of land plant phylogeny. Bot. Rev. 65, 188-218.
Rothwell, G.W., Escapa, I.H. and Tomescu, A.M.F., 2018. Tree of death: the role of fossils in resolving the overall pattern of plant phylogeny. Am. J. Bot. 105, 1239-1242.
Rothwell, G.W. and Nixon, K.C., 2006. How does the inclusion of fossil data change our conclusions about the phylogenetic history of Euphyllophytes? Int. J. Plant Sci. 167, 737-749.
Rowe, T., 1988. Definition, diagnosis, and origin of Mammalia. J. Vertebr. Paleontol. 8, 241-264.
Sankoff, D. and Rousseau, P., 1975. Locating the vertices of a Steiner tree in an arbitrary metric space. Math. Program. 9, 240-246.
Savoretti, A., Bippus, A.C., Stockey, R.A., Rothwell, G.W. and Tomescu, A.M.F., 2018. Grimmiaceae in the early Cretaceous: Tricarinella crassiphylla gen. et sp. nov. and the resolving power of anatomically-preserved bryophytes. Ann. Bot. 121, 1275-1286.
Shelton, G.W.K., Stockey, R.A., Rothwell, G.W. and Tomescu, A.M.F., 2015. Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada. Am. J. Bot. 102, 1883-1900.
Simpson, G.G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York, NY.
Slater, G.J., Harmon, L.J. and Alfaro, M.E., 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66, 3931-3944.
Smith, N.D. and Turner, A.H., 2005. Morphology’s role in phylogeny reconstruction: perspectives from paleontology. Syst. Biol. 54, 166-173.
Steere, W.C., 1946. Cenozoic and Mesozoic bryophytes of North America. Am. Midl. Nat. 36, 298-324.
Sterli, J., Pol, D. and Laurin, M., 2013. Incorporating phylogenetic uncertainty on phylogeny-based palaeontological dating and the timing of turtle diversification. Cladistics 29, 233-246.
Tomescu, A.M.F., Bomfleur, B., Bippus, A.C. and Savoretti, A., 2018. Why are bryophytes so rare in the fossil record? A spotlight on taphonomy and fossil preservation. In: Krings, M., Harper, C.J., Cúneo, N.R. and Rothwell, G.W. (Eds.), Transformative Paleobotany. Academic Press, Cambridge, pp. 375-416.
Townrow, J.A., 1958. Two Triassic bryophytes from South Africa. J. S. Afr. Bot. 25, 1-22.
Villarreal, J.C., Crandall-Stotler, B.J., Hart, M.L., Long, D.G. and Forrest, L.L., 2016. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytol., 209, 1734-1746.
Wheeler, W.C., 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol. 44, 321-331.
Wickett, N.J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M.S., Gordon Burleigh, J., Gitzendanner, M.A., Ruhfel, B.R., Wafula, E., Der, J.P., Graham, S.W., Mathews, S., Melkonian, M., Soltis, D.E., Miles, N.W., Rothfels, C.J., Pokorny, L., Shaw, A.J., DeGironimo, L., Stevenson, D.W., Surek, B., Villarreal, J.C., Roure, B., Philippe, H., DePamphilis, C.W., Chen, T., Deyholos, M.K., Baucom, R.S., Kutchan, T.M., Augustin, M.M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Ka-Shu Wong, G. and Leebens-Mack, J., 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. 111, E4859-E4868.
Wiens, J.J., 1998. Does adding characters with missing data increase or decrease phylogenetic accuracy? Syst. Biol. 47, 625-640.
Wiens, J.J. and Morrill, M.C., 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst. Biol. 60, 719-731.
Wilf, P. and Escapa, I.H., 2015. Green web or megabiased clock? Plant fossils from Gondwanan Patagonia speak on evolutionary radiations. New Phytol. 207, 283-290.
Wilf, P. and Escapa, I.H., 2016. Molecular dates require geologic testing. New Phytol. 209, 1359-1362.
Wright, A.M., Lloyd, G.T. and Hillis, D.M., 2016. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst. Biol. 65, 602-611.
Zwickl, D.J. and Hillis, D.M., 2002. Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51, 588-598.
تواريخ الأحداث: Date Created: 20210903 Date Completed: 20220124 Latest Revision: 20220124
رمز التحديث: 20221213
DOI: 10.1111/cla.12442
PMID: 34478198
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-0031
DOI:10.1111/cla.12442