دورية أكاديمية

Chronic exposure to lead acetate promotes changes in the alveolar bone of rats: microstructural and physical-chemical characterization.

التفاصيل البيبلوغرافية
العنوان: Chronic exposure to lead acetate promotes changes in the alveolar bone of rats: microstructural and physical-chemical characterization.
المؤلفون: Davis LL; Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil., Aragão WAB; Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil., de Oliveira Lopes G; Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil., Eiró LG; Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil., Freire AR; Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil., Prado FB; Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil., Rossi AC; Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil., da Silva Cruz A; Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil., das Graças Fernandes Dantas K; Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil., Albuquerque ARL; Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil., Paz SPA; Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil., Angélica RS; Laboratory of Mineral Characterization, Institute of Geology and Geochemistry, Federal University of Pará, Belém, PA, Brazil., Lima RR; Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil. rafalima@ufpa.br.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2022 Feb; Vol. 29 (10), pp. 13930-13940. Date of Electronic Publication: 2021 Oct 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Bone and Bones* , Lead*, Acetates ; Animals ; Rats ; Rats, Wistar ; X-Ray Microtomography
مستخلص: There are a few data relating to the effects of lead (Pb) exposure on the alveolar bone, which has very distinct morphophysiological characteristics and is of great importance in the oral cavity. In this context, the aim of this study was to investigate the changes promoted after long-term exposure to Pb in the microstructure of the alveolar bone of rats. Twenty adult Wistar rats were exposed to 50 mg/kg/day of lead acetate for 55 days. These animals were euthanized and had their mandible removed. Each mandible was divided into hemimandibles, and the alveolar bone was used for bone lead quantification, crystallinity analysis, microstructure evaluation by the percentage of bone volume (BV/TV), number of trabeculae (Tb.N), thickness of the trabecular (Tb.Th), and trabecular space (Tb.Sp). Morphometric analysis of the exposed root area was also performed. Long-term exposure to Pb resulted in high levels of Pb in the alveolar bone but showed no changes in the organization of crystallinity. The microstructural analyses showed a reduction of BV/TV, Tb.Th, and Tb.N and increase of Tb.Sp parameters, resulting in an increase in the exposed root area and an alveolar bone loss in height. The findings of this study reveal the ability of Pb to alter the alveolar bone microstructure after long-term exposure to the metal, possibly due to changes in tissue homeostasis, contributing to the reduction of bone quality.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Álvarez-Lloret P, Lee CM, Conti MI, Terrizzi AR, González-López S, Martínez MP (2017) Effects of chronic lead exposure on bone mineral properties in femurs of growing rats. Toxicology 377:64–72. (PMID: 10.1016/j.tox.2016.11.017)
Beier EE, Maher JR, Sheu T-J, Cory-Slechta DA, Berger AJ, Zuscik MJ, Puzas JE (2013) Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling. Environ Health Perspect 121(1):97–104. https://doi.org/10.1289/ehp.1205374. (PMID: 10.1289/ehp.1205374)
Beier EE, Inzana JA, Sheu T-J, Shu L, Puzas JE, Mooney RA (2015) Effects of combined exposure to lead and high-fat diet on bone quality in juvenile male mice. Environ Health Perspect 123(10):935–943. https://doi.org/10.1289/ehp.1408581. (PMID: 10.1289/ehp.1408581)
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res Off J Am Soc Bone Miner Res 25(7):1468–1486. https://doi.org/10.1002/jbmr.141. (PMID: 10.1002/jbmr.141)
Brito JA, Costa IM, E Silva AM, Marques JM, Zagalo CM, Cavaleiro II, Fernandes TA, Gonçalves LL (2014) Changes in bone Pb accumulation: cause and effect of altered bone turnover. Bone 64:228–234. https://doi.org/10.1016/j.bone.2014.04.021. (PMID: 10.1016/j.bone.2014.04.021)
Bruker (2021) Morphometric parameters measured by Skyscan™ CT-analyser software. SkyScan: Aartselaar, Belgium, pp 6–11.
Campbell JR, Rosier RN, Novotny L, Puzas JE (2004) The association between environmental lead exposure and bone density in children. Environ Health Perspect 112(11):1200–1203. https://doi.org/10.1289/ehp.6555. (PMID: 10.1289/ehp.6555)
Chai Y, Maxson RE Jr (2006) Recent advances in craniofacial morphogenesis. Dev Dyn: an official publication of the American Association of Anatomists 235(9):2353–2375. https://doi.org/10.1002/dvdy.20833. (PMID: 10.1002/dvdy.20833)
da Silva DRF, Bittencourt LO, Aragão WAB, Nascimento PC, Leão LKR, Oliveira ACA, Crespo-López ME, Lima RR (2020)Long-term exposure to lead reduces antioxidant capacity and triggers motor neurons degeneration and demyelination in spinal cord of adult rats. Ecotoxicol Environ Saf 194:110358. https://doi.org/10.1016/j.ecoenv.2020.110358. (PMID: 10.1016/j.ecoenv.2020.110358)
Danielsson P-E(1980) Euclidean distance mapping. Comput Graphics Image Proc 14(3):227–248. (PMID: 10.1016/0146-664X(80)90054-4)
de Azambuja CB, Cavagni J, Wagner MC, Gaio EJ, Rösing CK (2012) Correlation analysis of alveolar bone loss in buccal/palatal and proximal surfaces in rats. Braz Oral Res 26(6):571–577. https://doi.org/10.1590/s1806-83242012000600014. (PMID: 10.1590/s1806-83242012000600014)
de Figueiredo FA et al (2014) Reduced bone and body mass in young male rats exposed to lead. Biomed Res Int 2014:571065. https://doi.org/10.1155/2014/571065. (PMID: 10.1155/2014/571065)
de Sousa RA, Sabarense CM, Prado GL, Metze K, Cadore S (2013) Lead biomonitoring in different organs of lead intoxicated rats employing GF AAS and different sample preparations. Talanta 104:90–96. https://doi.org/10.1016/j.talanta.2012.11.043. (PMID: 10.1016/j.talanta.2012.11.043)
Dongre NN, Suryakar AN, Patil AJ, Hundekari IA, Devarnavadagi BB (2013) Biochemical effects of lead exposure on battery manufacture workers with reference to blood pressure, calcium metabolism and bone mineral density. Indian J Clin Biochem 28(1):65–70. https://doi.org/10.1007/s12291-012-0241-8. (PMID: 10.1007/s12291-012-0241-8)
Ellis DE, Terra J, Warschkow O, Jiang M, González GB, Okasinski JS, Bedzyk MJ, Rossi AM, Eon JG (2006) A theoretical and experimental study of lead substitution in calcium hydroxyapatite. Phys Chem Chem Phys 8(8):967–976. https://doi.org/10.1039/b509254j. (PMID: 10.1039/b509254j)
Fan J, Zhao L, Kan J, Qiu H, Xu X, Cao X (2020) Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles. Ecotoxicol Environ Saf 194:110411. https://doi.org/10.1016/j.ecoenv.2020.110411. (PMID: 10.1016/j.ecoenv.2020.110411)
Fernandes MI, Gaio EJ, Oppermann RV, Rados PV, Rosing CK (2007) Comparison of histometric and morphometric analyses of bone height in ligature-induced periodontitis in rats. Braz Oral Res 21(3):216–221. https://doi.org/10.1590/s1806-83242007000300005. (PMID: 10.1590/s1806-83242007000300005)
Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58. https://doi.org/10.2478/v10102-012-0009-2. (PMID: 10.2478/v10102-012-0009-2)
Gu H, Robison G, Hong L, Barrea R, Wei X, Farlow MR, Pushkar YN, Du Y, Zheng W (2012) Increased β-amyloid deposition in Tg-SWDI transgenic mouse brain following in vivo lead exposure. Toxicol Lett 213(2):211–219. https://doi.org/10.1016/j.toxlet.2012.07.002. (PMID: 10.1016/j.toxlet.2012.07.002)
Guimarães D, Carvalho ML, Geraldes V, Rocha I, Santos JP (2012) Study of lead accumulation in bones of Wistar rats by X-ray fluorescence analysis: aging effect. Metallomics 4(1):66–71. https://doi.org/10.1039/c1mt00149c. (PMID: 10.1039/c1mt00149c)
Hernández-Ochoa I, García-Vargas G, López-Carrillo L, Rubio-Andrade M, Morán-Martínez J, Cebrián ME, Quintanilla-Vega B (2005) Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol 20(2):221–228. https://doi.org/10.1016/j.reprotox.2005.01.007. (PMID: 10.1016/j.reprotox.2005.01.007)
Hildebrand T, Rüegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185(1):67–75. (PMID: 10.1046/j.1365-2818.1997.1340694.x)
Hu T, Song J, Zeng W, Li J, Wang H, Zhang Y, Suo H (2020) Lactobacillus plantarum LP33 attenuates Pb-induced hepatic injury in rats by reducing oxidative stress and inflammation and promoting Pb excretion. Food Chem Toxicol 143:111533. https://doi.org/10.1016/j.fct.2020.111533. (PMID: 10.1016/j.fct.2020.111533)
Jonasson G, Skoglund I, Rythén M (2018) The rise and fall of the alveolar process: dependency of teeth and metabolic aspects. Arch Oral Biol 96:195–200. https://doi.org/10.1016/j.archoralbio.2018.09.016. (PMID: 10.1016/j.archoralbio.2018.09.016)
Kasperczyk A, Dobrakowski M, Czuba ZP, Horak S, Kasperczyk S (2015) Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile. Toxicol Appl Pharmacol 284(3):339–344. https://doi.org/10.1016/j.taap.2015.03.001. (PMID: 10.1016/j.taap.2015.03.001)
Klotz K, Göen T (2017) Human biomonitoring of lead exposure. In: Sigel A, Sigel H, Sigel R (eds) Lead: its effects on environment and health. De Gruyter, Berlin, pp 99–122. https://doi.org/10.1515/9783110434330-006. (PMID: 10.1515/9783110434330-006)
Leão LKR, Bittencourt LO, Oliveira AC, Nascimento PC, Miranda GHN, Ferreira RO, Nabiça M, Dantas K, Dionizio A, Cartágenes S, Buzalaf MAR, Crespo-Lopez ME, Maia CSF, Lima RR (2020)Long-term lead exposure since adolescence causes proteomic and morphological alterations in the cerebellum associated with motor deficits in adult rats. Int J Mol Sci 21(10):3571. https://doi.org/10.3390/ijms21103571. (PMID: 10.3390/ijms21103571)
Lee C, Lee J-H, Han S-S, Kim YH, Choi Y-J, Jeon KJ, Jung HI (2019)Site-specific and time-course changes of postmenopausal osteoporosis in rat mandible: comparative study with femur. Sci Rep 9(1):14155. https://doi.org/10.1038/s41598-019-50554-w. (PMID: 10.1038/s41598-019-50554-w)
Leonas R, Noor Z, Rasyid HN, Madjid TH, Tanjung FA (2016) Effect of lead nanoparticles inhalation on bone calcium sensing receptor, hydroxyapatite crystal and receptor activator of nuclear factor-kappa B in rats. Acta Inform Med 24(5):343–346. https://doi.org/10.5455/aim.2016.24.343-346. (PMID: 10.5455/aim.2016.24.343-346)
Lessler MA (1988) Lead and lead poisoning from antiquity to modern times. Ohio J Sci 88(3):78–84.
Liberman DN, Pilau RM, Orlandini LF, Gaio EJ, Rösing CK (2011) Comparison of two methods for alveolar bone loss measurement in an experimental periodontal disease model in rats. Braz Oral Res 25(1):80–84. https://doi.org/10.1590/s1806-83242011005000002. (PMID: 10.1590/s1806-83242011005000002)
Lopes GO et al (2020) Effects of lead exposure on salivary glands of rats: insights into the oxidative biochemistry and glandular morphology. Environ Sci Pollut Res Int 28(9):10918–10930. https://doi.org/10.1007/s11356-020-11270-5. (PMID: 10.1007/s11356-020-11270-5)
Lu H, Yuan G, Yin Z, Dai S, Jia R, Xu J, Song X, Li L, Lv C (2014) Effects of subchronic exposure to lead acetate and cadmium chloride on rat’s bone: Ca and Pi contents, bone density, and histopathological evaluation. Int J Clin Exp Pathol 7(2):640–647.
Mavropoulos A, Rizzoli R, Ammann P (2007) Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res 22(3):403–410. https://doi.org/10.1359/jbmr.061208. (PMID: 10.1359/jbmr.061208)
Mavropoulos A, Kiliaridis S, Rizzoli R, Ammann P (2014) Normal masticatory function partially protects the rat mandibular bone from estrogen-deficiency induced osteoporosis. J Biomech 47(11):2666–2671. https://doi.org/10.1016/j.jbiomech.2014.05.012. (PMID: 10.1016/j.jbiomech.2014.05.012)
Mitra P, Sharma S, Purohit P, Sharma P (2017) Clinical and molecular aspects of lead toxicity: an update. Crit Rev Clin Lab Sci 54(7-8):506–528. https://doi.org/10.1080/10408363.2017.1408562. (PMID: 10.1080/10408363.2017.1408562)
Montalvany-Antonucci CC, Zicker MC, Ferreira AVM, Macari S, Ramos-Junior ES, Gomez RS, Pereira TSF, Madeira MFM, Fukada SY, Andrade I Jr, Silva TA (2018)High-fat diet disrupts bone remodeling by inducing local and systemic alterations. J Nutr Biochem 59:93–103. https://doi.org/10.1016/j.jnutbio.2018.06.006. (PMID: 10.1016/j.jnutbio.2018.06.006)
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137(1):0108021–01080215. https://doi.org/10.1115/1.4029176. (PMID: 10.1115/1.4029176)
Olchowik G, Widomska J, Tomaszewski M, Gospodarek M, Tomaszewska M, Jagiełło-Wójtowicz E (2014) The influence of lead on the biomechanical properties of bone tissue in rats. Ann Agric Environ Med 21(2):278–281. https://doi.org/10.5604/1232-1966.1108591. (PMID: 10.5604/1232-1966.1108591)
Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11(1):2–22.
Pereira JB Jr, Dantas KG (2016) Evaluation of inorganic elements in cat's claw teas using ICP OES and GFAAS. Food Chem 196:331–337. https://doi.org/10.1016/j.foodchem.2015.09.057. (PMID: 10.1016/j.foodchem.2015.09.057)
Rădulescu A, Lundgren S (2019) A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep 9(1):14225. https://doi.org/10.1038/s41598-019-50654-7. (PMID: 10.1038/s41598-019-50654-7)
Rémy É, Thiel É (2002) Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D. Pattern Recogn Lett 23(6):649–661. (PMID: 10.1016/S0167-8655(01)00141-6)
Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24(1):15–45. https://doi.org/10.1515/reveh.2009.24.1.15. (PMID: 10.1515/reveh.2009.24.1.15)
Schanne F, Dowd TL, Gupta RK, Rosen JF (1989) Lead increases free Ca2+ concentration in cultured osteoblastic bone cells: simultaneous detection of intracellular free Pb2+ by 19F NMR. Proc Natl Acad Sci 86(13):5133–5135. https://doi.org/10.1073/pnas.86.13.5133. (PMID: 10.1073/pnas.86.13.5133)
Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z (2019)Long-term exposure to low-dose lead induced deterioration in bone microstructure of male mice. Biol Trace Elem Res 195(2):491–498. https://doi.org/10.1007/s12011-019-01864-7. (PMID: 10.1007/s12011-019-01864-7)
Silbergeld EK (1991) Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect 91:63–70. https://doi.org/10.1289/ehp.919163. (PMID: 10.1289/ehp.919163)
Smith DR, Osterloh JD, Flegal AR (1996) Use of endogenous, stable lead isotopes to determine release of lead from the skeleton. Environ Health Perspect 104(1):60–66. https://doi.org/10.1289/ehp.9610460. (PMID: 10.1289/ehp.9610460)
Sprowles JLN, Amos-Kroohs RM, Braun AA, Sugimoto C, Vorhees CV, Williams MT (2018) Developmental manganese, lead, and barren cage exposure have adverse long-term neurocognitive, behavioral and monoamine effects in Sprague-Dawley rats. Neurotoxicol Teratol 67:50–64. https://doi.org/10.1016/j.ntt.2018.04.001. (PMID: 10.1016/j.ntt.2018.04.001)
Sreenivasan D, Watson M, Callon K, Dray M, Das R, Grey A, Cornish J, Fernandez J (2013) Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone. Med Eng Phys 35(12):1793–1800. https://doi.org/10.1016/j.medengphy.2013.07.013. (PMID: 10.1016/j.medengphy.2013.07.013)
Sun Z, Lin Z, Bai G, Di J, Jiang L (2014) Influence of parathyroid hormone and estrogen on alveolar bone metabolism of castrated female rats. Hua Xi Kou Qiang Yi Xue Za Zhi 32(2):134–137. Chinese. https://doi.org/10.7518/hxkq.2014.02.007. (PMID: 10.7518/hxkq.2014.02.007)
Tan Y, Fu R, Liu J, Wu Y, Wang B, Jiang N, Nie P, Cao H, Yang Z, Fang B (2016) ADAM10 is essential for cranial neural crest-derived maxillofacial bone development. Biochem Biophys Res Commun 475(4):308–314. https://doi.org/10.1016/j.bbrc.2016.05.101. (PMID: 10.1016/j.bbrc.2016.05.101)
Tanaka M, Toyooka E, Kohno S, Ozawa H, Ejiri S (2003)Long-term changes in trabecular structure of aged rat alveolar bone after ovariectomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95(4):495–502. https://doi.org/10.1067/moe.2003.135. (PMID: 10.1067/moe.2003.135)
Terrizzi AR, Fernandez-Solari J, Lee CM, Bozzini C, Mandalunis PM, Elverdin JC, Conti MI, Martínez MP (2013) Alveolar bone loss associated to periodontal disease in lead intoxicated rats under environmental hypoxia. Arch Oral Biol 58(10):1407–1414. https://doi.org/10.1016/j.archoralbio.2013.06.010. (PMID: 10.1016/j.archoralbio.2013.06.010)
Terrizzi AR, Fernandez-Solari J, Lee CM, Martínez MP, Conti MI (2014) Lead intoxication under environmental hypoxia impairs oral health. J Toxicol Environ Health A 77(21):1304–1310. https://doi.org/10.1080/15287394.2014.938209. (PMID: 10.1080/15287394.2014.938209)
Thomsen V, Roberts G, Burgess K (2000) The concept of background equivalent concentration in spectrochemistry. Spectroscopy 15(1):33–36.
Timchalk C, Lin Y, Weitz KK, Wu H, Gies RA, Moore DA, Yantasee W (2006) Disposition of lead (Pb) in saliva and blood of Sprague-Dawley rats following a single or repeated oral exposure to Pb-acetate. Toxicology 222(1-2):86–94. https://doi.org/10.1016/j.tox.2006.01.030. (PMID: 10.1016/j.tox.2006.01.030)
Tomaszewska E, Dobrowolski P, Winiarska-Mieczan A, Kwiecień M, Tomczyk A, Muszyński S (2017) The effect of tannic acid on the bone tissue of adult male Wistar rats exposed to cadmium and lead. Exp Toxicol Pathol 69(3):131–141. https://doi.org/10.1016/j.etp.2016.12.003. (PMID: 10.1016/j.etp.2016.12.003)
Tong S, Schirnding YE, Prapamontol T (2000) Environmental lead exposure: a public health problem of global dimensions. Bull World Health Organ 78(9):1068–1077.
Toscano CD, Guilarte TR (2005) Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev 49(3):529–554. https://doi.org/10.1016/j.brainresrev.2005.02.004. (PMID: 10.1016/j.brainresrev.2005.02.004)
Vargas-Sanchez PK, Moro MG, Santos FA, Anbinder AL, Kreich E, Moraes RM, Padilha L, Kusiak C, Scomparin DX, Franco GCN (2017) Agreement, correlation, and kinetics of the alveolar bone-loss measurement methodologies in a ligature-induced periodontitis animal model. J Appl Oral Sci 25(5):490–497. https://doi.org/10.1590/1678-7757-2016-0517. (PMID: 10.1590/1678-7757-2016-0517)
Wise GE, King GJ (2008) Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87(5):414–434. https://doi.org/10.1177/154405910808700509. (PMID: 10.1177/154405910808700509)
Wong AK, Beattie KA, Bhargava A, Cheung M, Webber CE, Chettle DR, Papaioannou A, Adachi JD, Canadian Multicentre Osteoporosis Study (CaMos) Research Group (2015) Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women. Bone 79:58–64. https://doi.org/10.1016/j.bone.2015.05.010. (PMID: 10.1016/j.bone.2015.05.010)
Wu Q, Yang B, Cao C, Guang M, Gong P (2016)Age-dependent impact of inferior alveolar nerve transection on mandibular bone metabolism and the underlying mechanisms. J Mol Histol 47(6):579–586. https://doi.org/10.1007/s10735-016-9697-9. (PMID: 10.1007/s10735-016-9697-9)
Zhang Y, Zhou L, Li S, Liu J, Sun S, Ji X, Yan C, Xu J (2019) Impacts of lead exposure and chelation therapy on bone metabolism during different developmental stages of rats. Ecotoxicol Environ Saf 183:109441. https://doi.org/10.1016/j.ecoenv.2019.109441. (PMID: 10.1016/j.ecoenv.2019.109441)
Zhou S, Yang Y, Ha N, Zhang P, Ma X, Gong X, Hong Y, Yang X, Yang S, Dai Q, Jiang L (2018) The specific morphological features of alveolar bone. J Craniofac Surg 29(5):1216–1219. https://doi.org/10.1097/SCS.0000000000004395. (PMID: 10.1097/SCS.0000000000004395)
فهرسة مساهمة: Keywords: Alveolar bone loss; Environmental exposure; Lead; MicroCT; Periodontium; Toxicology
المشرفين على المادة: 0 (Acetates)
2P299V784P (Lead)
تواريخ الأحداث: Date Created: 20211002 Date Completed: 20220204 Latest Revision: 20220204
رمز التحديث: 20221213
DOI: 10.1007/s11356-021-16723-z
PMID: 34599710
قاعدة البيانات: MEDLINE