دورية أكاديمية

Recent Advances Toward Engineering Glycoproteins Using Modified Yeast Display Platforms.

التفاصيل البيبلوغرافية
العنوان: Recent Advances Toward Engineering Glycoproteins Using Modified Yeast Display Platforms.
المؤلفون: Shenoy A; Biochemistry and Molecular Biology Department, University of Georgia, Athens, GA, USA., Barb AW; Biochemistry and Molecular Biology Department, University of Georgia, Athens, GA, USA. adambarb@uga.edu.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2370, pp. 185-205.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Saccharomyces cerevisiae*/genetics , Saccharomyces cerevisiae*/metabolism, Glycoproteins/genetics ; Glycoproteins/metabolism ; Glycosylation ; Humans ; Protein Engineering ; Recombinant Proteins/genetics ; Recombinant Proteins/metabolism
مستخلص: Yeast are capable recombinant protein expression hosts that provide eukaryotic posttranslational modifications such as disulfide bond formation and N-glycosylation. This property has been used to create surface display libraries for protein engineering; however, yeast surface display (YSD) with common laboratory strains has limitations in terms of diversifying glycoproteins due to the incorporation of high levels of mannose residues which often obscure important epitopes and are immunogenic in humans. Developing new strains for efficient and appropriate display will require combining existing technologies to permit efficient glycoprotein engineering. Foundational efforts generating knockout strains lacking characteristic hypermannosylation reactions exhibited morphological defects and poor growth. Later strains with "humanized" N-glycosylation machinery surmounted these limitations by targeting a small suite of glycosylhydrolase and glycosyltransferase enzymes from other taxa to the endoplasmic reticulum and Golgi. Advanced yeast strains also provide key modifications at the glycan termini that are essential for the full function of many glycoproteins. Here we review progress toward glycoprotein engineering when glycosylation is required for full function using advanced yeast expression platforms and the suitability of each for YSD of glycoproteins.
(© 2022. Springer Science+Business Media, LLC, part of Springer Nature.)
References: Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635. https://doi.org/10.1002/jps.20319. (PMID: 10.1002/jps.2031915959882)
Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31:290–299. https://doi.org/10.1016/S0301-472X(03)00006-7. (PMID: 10.1016/S0301-472X(03)00006-712691916)
Fan SQ, Huang W, Wang LX (2012) Remarkable transglycosylation activity of glycosynthase mutants of endo-D, an endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae. J Biol Chem 287:11272–11281. https://doi.org/10.1074/jbc.M112.340497. (PMID: 10.1074/jbc.M112.340497223187283322811)
Huang W, Li C, Li B, Umekawa M, Yamamoto K, Zhang X, Wang LX (2009) Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-Glycans. J Am Chem Soc 131:2214–2223. https://doi.org/10.1021/ja8074677. (PMID: 10.1021/ja8074677191996092640449)
Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3(2):119–128. https://doi.org/10.1038/nrmicro1087. (PMID: 10.1038/nrmicro108715685223)
Chen R (2015) The sweet branch of metabolic engineering : cherry—picking the low—hanging sugary fruits. Microb Cell Factories 14:1–10. https://doi.org/10.1186/s12934-015-0389-z. (PMID: 10.1186/s12934-015-0389-z)
Piirainen MA, De Ruijter JC, Koskela EV, Frey AD (2014) Glycoengineering of yeasts from the perspective of glycosylation efficiency. New Biotechnol 31:532–537. https://doi.org/10.1016/j.nbt.2014.03.001. (PMID: 10.1016/j.nbt.2014.03.001)
De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi : current state and perspectives. Appl Microbiol Biotechnol 87:1617–1631. https://doi.org/10.1007/s00253-010-2721-1. (PMID: 10.1007/s00253-010-2721-120585772)
Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A (2017) Humanizing glycosylation pathways in eukaryotic expression systems. World J Microbiol Biotechnol 33:4. https://doi.org/10.1007/s11274-016-2172-7. (PMID: 10.1007/s11274-016-2172-727837408)
Boder E, Wittrup K (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. https://doi.org/10.1038/nbt0697-553.
Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191. https://doi.org/10.1038/nrm1052. (PMID: 10.1038/nrm105212612637)
Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90. https://doi.org/10.1093/protein/gzl057. (PMID: 10.1093/protein/gzl05717242026)
Schreuder MP, Mooren ATA, Toschka HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14:115–120. (PMID: 10.1016/0167-7799(96)10017-2)
Kukuruzinska MA, MLE B, Jackson BJ (1987) Protein Gl Ycosyla Tion in yeast. Annu Rev Biochem 56:915–944. (PMID: 10.1146/annurev.bi.56.070187.004411)
Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66. https://doi.org/10.1016/S0168-6445(99)00029-7. (PMID: 10.1016/S0168-6445(99)00029-710640598)
Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC (2011) High-mannose glycans on the fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21:949–959. https://doi.org/10.1093/glycob/cwr027. (PMID: 10.1093/glycob/cwr02721421994)
Baudin A, Ozier-kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330. https://doi.org/10.1093/nar/21.14.3329. (PMID: 10.1093/nar/21.14.33298341614309783)
Nakayama K, Nagasu T, Shimma Y, Kuromitsu J, Jigami Y (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519. https://doi.org/10.1002/j.1460-2075.1992.tb05316.x. (PMID: 10.1002/j.1460-2075.1992.tb05316.x1628616556726)
Nakayama KI, Nakanishi-Shindo Y, Tanaka A, Haga-Toda Y, Jigami Y (1997) Substrate specificity of α-1,6-mannosyltransferase that initiates N-linked mannose outer chain elongation in Saccharomyces cerevisiae. FEBS Lett 412:547–550. https://doi.org/10.1016/S0014-5793(97)00634-0. (PMID: 10.1016/S0014-5793(97)00634-09276464)
Nakanishi-Shindo Y, Nakayama KI, Tanaka A, Toda Y, Jigami Y (1993) Structure of the N-linked oligosaccharides that show the complete loss of α-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem 268:26338–26345. (PMID: 10.1016/S0021-9258(19)74320-8)
Nagasu T, Shimma Y-I, Nakanishi Y, Kuromitsu J, Iwama K, Nakayama K-I, Suzuki K, Jigami Y (1992) Isolation of new temperature-sensitive mutants of Saccharomyces cerevisiae deficient in mannose outer chain elongation. Yeast 8:535–547. https://doi.org/10.1002/yea.320080705. (PMID: 10.1002/yea.3200807051523886)
Zhou J, Zhang H, Liu X, Wang PG, Qi Q (2007) Influence of N-glycosylation on Saccharomyces cerevisiae morphology: a Golgi glycosylation mutant shows cell division defects. Curr Microbiol 55:198–204. https://doi.org/10.1007/s00284-006-0585-5. (PMID: 10.1007/s00284-006-0585-517661134)
Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S, Itadani A, Hirashima M, Shimoda C, Jigami Y, Nakayama KI (2009) Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 19:428–436. https://doi.org/10.1093/glycob/cwn157. (PMID: 10.1093/glycob/cwn15719129247)
Martinet W, Maras M, Saelens X, Jou WM, Contreras R (1998) Modification of the protein glycosylation pathway in the methylotrophic yeast Pichia pastoris. Biotechnol Lett 20:1171–1177. https://doi.org/10.1023/A:1005340806821. (PMID: 10.1023/A:1005340806821)
Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, Jigami Y, Ichishima E (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304. https://doi.org/10.1074/jbc.273.41.26298. (PMID: 10.1074/jbc.273.41.262989756858)
Callewaert N, Y, W. L., Cadirgi H, Geysens S, Saelens X, Min W, Y R. C FEBS Letters 503 (2001). Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2- K - D -mannosidase for N-glycan engineering in Pichia pastoris. https://doi.org/10.1016/s0014-5793(01)02676-x.
Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027. https://doi.org/10.1073/pnas.0931263100. (PMID: 10.1073/pnas.093126310012702754154291)
Muraoka M, Miki T, Ishida N, Hara T, Kawakita M (2007) Variety of nucleotide sugar transporters with respect to the interaction with nucleoside mono- and diphosphates. J Biol Chem 282:24615–24622. https://doi.org/10.1074/jbc.M611358200. (PMID: 10.1074/jbc.M61135820017599910)
Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi B, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to. Science 313:1441–1443. https://doi.org/10.1126/science.1130256. (PMID: 10.1126/science.113025616960007)
Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646. https://doi.org/10.1128/AEM.70.5.2639-2646.2004. (PMID: 10.1128/AEM.70.5.2639-2646.200415128513404441)
Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris : production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766. https://doi.org/10.1093/glycob/cwh104. (PMID: 10.1093/glycob/cwh10415190003)
Cao J, Perez-Pinera P, Lowenhaupt K, Wu MR, Purcell O, De La Fuente-Nunez C, Lu TK (2018) Versatile and on-demand biologics co-production in yeast. Nat Commun 9:77. https://doi.org/10.1038/s41467-017-02587-w. (PMID: 10.1038/s41467-017-02587-w293115425758815)
Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi B, Cook WJ, Cukan M, Houston-cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215. https://doi.org/10.1038/nbt1178. (PMID: 10.1038/nbt117816429149)
Zhang G-W, Shen L, Zhong W, Xiong Y, Zhang LI, Tao HW (2016) Myocardial Extraction from Newborn Rats HHS public access. Physiol Behav 176:139–148. https://doi.org/10.1016/j.physbeh.2017.03.040. (PMID: 10.1016/j.physbeh.2017.03.040)
Jiang Y, Li F, Button M, Cukan M, Moore R, Sharkey N, Li H (2010) A high-throughput purification of monoclonal antibodies from glycoengineered Pichia pastoris. Protein Expr Purif 74:9–15. https://doi.org/10.1016/j.pep.2010.04.016. (PMID: 10.1016/j.pep.2010.04.01620447459)
Potgieter TI, Kersey SD, Mallem MR, Nylen AC, D’Anjou M (2010) Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol Bioeng 106:918–927. https://doi.org/10.1002/bit.22756. (PMID: 10.1002/bit.2275620506148)
Knauer R, Lehle L (1999) The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta Gen Subj 1426:259–273. https://doi.org/10.1016/S0304-4165(98)00128-7. (PMID: 10.1016/S0304-4165(98)00128-7)
Cain JA, Dale AL, Niewold P, Klare WP, Man L, White MY, Scott NE, Cordwell SJ (2019) Proteomics reveals multiple phenotypes associated with N-linked glycosylation in Campylobacter jejuni. Mol Cell Proteomics 18(4):715–734. https://doi.org/10.1074/mcp.RA118.001199.
Shams-Eldin H, Blaschke T, Anhlan D, Niehus S, Müller J, Azzouz N, Schwarz RT (2005) High-level expression of the toxoplasma gondii STT3 gene is required for suppression of the yeast STT3 gene mutation. Mol Biochem Parasitol 143:6–11. https://doi.org/10.1016/j.molbiopara.2005.04.008. (PMID: 10.1016/j.molbiopara.2005.04.00815936094)
Proteins Y (1981) N-glycosylation of yeast Proteins. Control 108:101–108.
Huffaker TC, Robbins PW (1983) Yeast mutants deficient in protein glycosylation. Proc Natl Acad Sci U S A 80:7466–7470. https://doi.org/10.1073/pnas.80.24.7466. (PMID: 10.1073/pnas.80.24.74666369318389972)
Castro O, Movsichoff F, Parodi AJ (2006) Preferential transfer of the complete glycan is determined by the oligosaccharyltransferase complex and not by the catalytic subunit. Proc Natl Acad Sci U S A 103:14756–14760. https://doi.org/10.1073/pnas.0607086103. (PMID: 10.1073/pnas.0607086103170010151595424)
Mokas S, Mills JR, Garreau C, Fournier M-J, Robert F, Arya P, Kaufman RJ, Pelletier J, Mazroui R (2009) Uncoupling stress granule assembly and translation initiation inhibition. Mol Biol Cell 20:2673–2683. https://doi.org/10.1091/mbc.E08. (PMID: 10.1091/mbc.E08193694212688547)
Hese K, Otto C, Routier H (2009) The yeast oligosaccharyltransferase complex can be replaced by STT3 from Leishmania major. Glycobiology 19:160–171. https://doi.org/10.1093/glycob/cwn118. (PMID: 10.1093/glycob/cwn11818955371)
Davidson RC, Nett JH, Renfer E, Li H, Stadheim TA, Miller BJ, Miele RG, Hamilton SR, Choi BK, Mitchell TI, Wildt S (2004) Functional analysis of the ALG3 gene encoding the Dol-P-man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology 14:399–407. https://doi.org/10.1093/glycob/cwh023. (PMID: 10.1093/glycob/cwh02315033937)
Cipollo JF, Trimble RB, Chi JH, Yan Q, Dean N (2001) The yeast ALG11 gene specifies addition of the terminal α1,2-man to the Man5GlcNAc2-PP-dolichol N-glycosylation intermediate formed on the cytosolic side of the endoplasmic reticulum. J Biol Chem 276:21828–21840. https://doi.org/10.1074/jbc.M010896200. (PMID: 10.1074/jbc.M01089620011278778)
Nasab FP, Aebi M, Bernhard G, Frey AD (2013) A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl Environ Microbiol 79:997–1007. https://doi.org/10.1128/AEM.02817-12. (PMID: 10.1128/AEM.02817-12)
Helenius J, Ng DTW, Marolda CL, Walter P, Valvano MA, Aebi M (2002) Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 1436:447–450. (PMID: 10.1038/415447a)
Choi B, Warburton S, Lin H (2012) Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 95:671–682. https://doi.org/10.1007/s00253-012-4067-3.
Li C, Wang LX (2018) Chemoenzymatic methods for the synthesis of glycoproteins. Chem Rev 118:8359–8413. https://doi.org/10.1021/acs.chemrev.8b00238. (PMID: 10.1021/acs.chemrev.8b00238301413276238085)
Wang LX, Amin MN (2014) Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem Biol 21:51–66. https://doi.org/10.1016/j.chembiol.2014.01.001. (PMID: 10.1016/j.chembiol.2014.01.001244392063923302)
Giddens JP, Lomino JV, DiLillo DJ, Ravetch JV, Wang LX (2018) Site-selective chemoenzymatic glycoengineering of fab and fc glycans of a therapeutic antibody. Proc Natl Acad Sci U S A 115:12023–12027. https://doi.org/10.1073/pnas.1812833115. (PMID: 10.1073/pnas.1812833115303971476255169)
Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX (2017) Modulating IgG effector function by fc glycan engineering. Proc Natl Acad Sci U S A 114:3485–3490. https://doi.org/10.1073/pnas.1702173114. (PMID: 10.1073/pnas.1702173114282892195380036)
Steinkellner H, Castilho A (2015) N-Glyco-Engineering in Plants: Update on Strategies and Major Achievements. Methods Mol Bio 1321:195–212. https://doi.org/10.1007/978-1-4939-2760-9_14 . PMID: 26082224.
Robbins PW, Wirth DF, Hering C (1981) Expression of the Streptomyces enzyme endoglycosidase H in Escherichia coli. J Biol Chem 256:10640–10644. (PMID: 10.1016/S0021-9258(19)68672-2)
Wang F, Wang X, Yu X, Fu L, Liu Y, Ma L, Zhai C (2015) High-level expression of endo-β-N-acetylglucosaminidase H from Streptomyces plicatus in Pichia pastoris and its application for the deglycosylation of glycoproteins. PLoS One 10:e0120458. https://doi.org/10.1371/journal.pone.0120458. (PMID: 10.1371/journal.pone.0120458257818974362766)
Fujita M, Ichiro SS, Haneda K, Inazu T, Takegawa K, Yamamoto K (2001) A novel disaccharide substrate having 1,2-oxazoline moiety for detection of transglycosylating activity of endoglycosidases. Biochim Biophys Acta Gen Subj 1528:9–14. https://doi.org/10.1016/S0304-4165(01)00164-7. (PMID: 10.1016/S0304-4165(01)00164-7)
Umekawa M, Huang W, Li B, Fujita K, Ashida H, Wang LX, Yamamoto K (2008) Mutants of Mucor hiemalis endo-β-N-acetylglucosaminidase show enhanced transglycosylation and glycosynthase-like activities. J Biol Chem 283:4469–4479. https://doi.org/10.1074/jbc.M707137200. (PMID: 10.1074/jbc.M70713720018096701)
Giddens JP, Lomino JV, Amin MN, Wang LX (2016) Endo-F3 glycosynthase mutants enable chemoenzymatic synthesis of core-fucosylated triantennary complex type glycopeptides and glycoproteins. J Biol Chem 291:9356–9370. https://doi.org/10.1074/jbc.M116.721597. (PMID: 10.1074/jbc.M116.721597269661834861498)
Collin M, Olsén A (2001) EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–3055. https://doi.org/10.1093/emboj/20.12.3046. (PMID: 10.1093/emboj/20.12.304611406581150189)
Allhorn M, Olin AI, Nimmerjahn F, Colin M (2008) Human IgC/FcγR interactions are modulated by streptococcal IgG glycan hydrolysis. PLoS One 3:e1413. https://doi.org/10.1371/journal.pone.0001413. (PMID: 10.1371/journal.pone.0001413181832942173940)
Trastoy B, Klontz E, Orwenyo J, Marina A, Wang LX, Sundberg EJ, Guerin ME (2018) Structural basis for the recognition of complex-type N-glycans by endoglycosidase S. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-04300-x. (PMID: 10.1038/s41467-018-04300-x)
Allhorn M, Olsén A, Collin M (2008) EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity. BMC Microbiol 8:1–10. https://doi.org/10.1186/1471-2180-8-3. (PMID: 10.1186/1471-2180-8-3)
Manuscript A (2013) Gain of Functions 134:12308–12318. https://doi.org/10.1021/ja3051266.Chemoenzymatic.
Sjögren J, Struwe WB, Cosgrave EFJ, Rudd PM, Stervander M, Allhorn M, Hollands A, Nizet V, Collin M (2013) EndoS2 is a unique and conserved enzyme of serotype M49 group a streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochem J 455:107–118. https://doi.org/10.1042/BJ20130126. (PMID: 10.1042/BJ2013012623865566)
Sjögren J, Cosgrave EFJ, Allhorn M, Nordgren M, Björk S, Olsson F, Fredriksson S, Collin M (2015) EndoS and EndoS2 hydrolyze fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantification of high-mannose glycans. Glycobiology 25:1053–1063. https://doi.org/10.1093/glycob/cwv047. (PMID: 10.1093/glycob/cwv047261568694551147)
Klontz EH, Trastoy B, Deredge D, Fields JK, Li C, Orwenyo J, Marina A, Beadenkopf R, Günther S, Flores J, Wintrode PL, Wang LX, Guerin ME, Sundberg EJ (2019) Molecular basis of broad Spectrum N-glycan specificity and processing of therapeutic IgG monoclonal Antibodies by endoglycosidase S2. ACS Central Sci 5:524–538. https://doi.org/10.1021/acscentsci.8b00917. (PMID: 10.1021/acscentsci.8b00917)
Li T, Tong X, Yang Q, Giddens JP, Wang LX (2016) Glycosynthase mutants of endoglycosidase S2 show potent transglycosylation activity and remarkably relaxed substrate specificity for antibody glycosylation remodeling. J Biol Chem 291:16508–16518. https://doi.org/10.1074/jbc.M116.738765. (PMID: 10.1074/jbc.M116.738765272884084974367)
Liu CP, Tsai TI, Cheng T, Shivatare VS, Wu CY, Wu CY, Wong CH (2018) Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc Natl Acad Sci U S A 115:720–725. https://doi.org/10.1073/pnas.1718172115. (PMID: 10.1073/pnas.1718172115293112945789950)
Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2007) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–769. https://doi.org/10.1038/nprot.2006.94. (PMID: 10.1038/nprot.2006.94)
Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705. https://doi.org/10.1073/pnas.170297297. (PMID: 10.1073/pnas.1702972971098450127086)
Walker LM, Bowley DR, Burton DR (2009) Efficient recovery of high-affinity Antibodies from a single-chain fab yeast display library. J Mol Biol 389:365–375. https://doi.org/10.1016/j.jmb.2009.04.019. (PMID: 10.1016/j.jmb.2009.04.019193761304332843)
Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R (2005) A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A 102(24):8466–8471. (PMID: 10.1073/pnas.0503543102)
Boder ET, Bill JR, Nields AW, Marrack PC (2005) Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnol Bioeng 92(4):485–491. https://doi.org/10.1002/bit.20616. (PMID: 10.1002/bit.2061616155952)
Wang XX, Li Y, Yin Y, Mo M, Wang Q, Gao W, Wang L, Mariuzza RA (2011) Affinity maturation of human CD4 by yeast surface display and crystal structure of a CD4-HLA-DR1 complex. Proc Natl Acad Sci U S A 108:15960–15965. https://doi.org/10.1073/pnas.1109438108. (PMID: 10.1073/pnas.1109438108219006043179091)
Shembekar N, Mallajosyula VVA, Mishra A, Yeolekar L, Dhere R, Kapre S, Varadarajan R, Gupta SK (2013) Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the “Sa” antigenic site. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0055516. (PMID: 10.1371/journal.pone.0055516)
Kim Y, Bhandari R, Cochran JR, Kuriyan J, Wittrup KD (2006) Directed evolution of the epidermal growth factor receptor extracellular domain for expression in yeast. Proteins 1035:1026–1035. https://doi.org/10.1002/prot.20618. (PMID: 10.1002/prot.20618)
Ranz DAMK (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci U S A 96:5651–5656. (PMID: 10.1073/pnas.96.10.5651)
Mathew E, Zhu H, Connelly SM, Sullivan MA, Brewer MG, Piepenbrink MS, Kobie JJ, Dewhurst S, Dumont ME (2018) Display of the HIV envelope protein at the yeast cell surface for immunogen development. PLoS One 13(10):e0205756. (PMID: 10.1371/journal.pone.0205756)
Jacobs PP, Ryckaert S, Geysens S, De Vusser K, Callewaert N, Contreras R (2008) Pichia surface display: display of proteins on the surface of glycoengineered Pichia pastoris strains. Biotechnol Lett 30:2173–2181. https://doi.org/10.1007/s10529-008-9807-1. (PMID: 10.1007/s10529-008-9807-118679585)
Antibodies SD (2012) Chapter 8 Pichia surface display: a tool for screening single domain antibodies. Methods Mol Biol 911:125–134. https://doi.org/10.1007/978-1-61779-968-6. (PMID: 10.1007/978-1-61779-968-6)
Ha S, Wang Y, Rustandi RR (2011) Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. mAbs 3:453–460. https://doi.org/10.4161/mabs.3.5.16891. (PMID: 10.4161/mabs.3.5.16891220486943225849)
Berner VK, Sura ME, Hunter KW Jr (2008) Conjugation of protein antigen to microparticulate β -glucan from Saccharomyces cerevisiae: a new adjuvant for intradermal and oral immunizations. Appl Microbiol Biotechnol 80:1053–1061. https://doi.org/10.1007/s00253-008-1618-8. (PMID: 10.1007/s00253-008-1618-818677470)
Schreuder MP (1996) Yeast expressing hepatitis B virus surface antigen determinants on its surface : implications for a possible oral vaccine. Vaccine 14:383–388. (PMID: 10.1016/0264-410X(95)00206-G)
Luo S, Yan L, Zhang X, Yuan L, Fang Q, Zhang YA, Dai H (2015) Yeast surface display of capsid protein VP7 of grass carp reovirus: fundamental investigation for the development of vaccine against hemorrhagic disease. J Microbiol Biotechnol 25:2135–2145. https://doi.org/10.4014/jmb.1505.05041. (PMID: 10.4014/jmb.1505.0504126282690)
Shibasaki S, Aoki W, Nomura T, Miyoshi A, Tafuku S, Sewaki T, Ueda M (2013) An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 69:262–268. https://doi.org/10.1111/2049-632X.12068. (PMID: 10.1111/2049-632X.1206823873745)
Ryckaert S, Pardon E, Steyaert J, Callewaert N (2010) Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. J Biotechnol 145:93–98. https://doi.org/10.1016/j.jbiotec.2009.10.010. (PMID: 10.1016/j.jbiotec.2009.10.01019861136)
Lin S, Houston-cummings NR, Prinz B, Moore R, Bobrowicz B, Davidson RC, Wildt S, Stadheim TA, Zha D (2012) A novel fragment of antigen binding (fab) surface display platform using glycoengineered Pichia pastoris. J Immunol Methods 375:159–165. https://doi.org/10.1016/j.jim.2011.10.003. (PMID: 10.1016/j.jim.2011.10.00322019510)
Shaheen HH, Prinz B, Chen M, Pavoor T, Lin S, Houston NR, Moore R, Stadheim TA, Zha D (2013) A Dual-Mode Surface Display System for the Maturation and Production of Monoclonal Antibodies in Glyco-Engineered Pichia pastoris. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0070190. (PMID: 10.1371/journal.pone.0070190)
Li S, Qiao J, Lin S, Liu Y, Ma L (2019) A Highly Efficient Indirect P. pastoris Surface Display Method Based on the CL7/Im7 Ultra-High-Affinity System. Molecules 24. https://doi.org/10.3390/molecules24081483.
Lozančić M, Hossain ASK, Mrša V, Teparić R (2019) Surface display—an alternative to classic enzyme immobilization. Catalysts 9(9):728. (PMID: 10.3390/catal9090728)
Jiang Z, Gao B, Ren R, Tao X, Ma Y, Wei D (2008) Efficient display of active lipase LipB52 with a Pichia pastoris cell surface display system and comparison with the LipB52 displayed on Saccharomyces cerevisiae cell surface. BMC Biotechnol 8:1–7. https://doi.org/10.1186/1472-6750-8-4. (PMID: 10.1186/1472-6750-8-4)
Harnpicharnchai P, Sornlake W, Tang K, Eurwilaichitr L, Tanapongpipat S (2010) Cell-surface phytase on Pichia pastoris cell wall offers great potential as a feed supplement. FEMS Microbiology Letters 302(1):8–14 https://doi.org/10.1111/j.1574-6968.2009.01811.x.
Yang S, Lv X, Wang X, Wang J, Wang R, Wang T (2017) Cell-surface displayed expression of Trehalose synthase from pseudomonas putida ATCC 47054 in Pichia Pastoris using Pir1p as an anchor protein. Front Microbiol 8:1–9. https://doi.org/10.3389/fmicb.2017.02583. (PMID: 10.3389/fmicb.2017.02583)
Uchański T, Zögg T, Yin J, Yuan D, Wohlkönig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E, Steyaert J (2019) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-018-37212-3. (PMID: 10.1038/s41598-018-37212-3)
Rosowski S, Becker S, Toleikis L, Valldorf B, Grzeschik J, Demir D, Willenbücher I, Gaa R, Kolmar H, Zielonka S, Krah S (2018) A novel one-step approach for the construction of yeast surface display fab antibody libraries. Microb Cell Factories 17:1–11. https://doi.org/10.1186/s12934-017-0853-z. (PMID: 10.1186/s12934-017-0853-z)
Mei M, Li J, Wang S, Lee KB, Iverson BL, Zhang G, Ge X, Yi L (2019) Prompting fab yeast surface display efficiency by ER retention and molecular chaperon co-expression. Front Bioeng Biotechnol 7:1–11. https://doi.org/10.3389/fbioe.2019.00362. (PMID: 10.3389/fbioe.2019.00362)
فهرسة مساهمة: Keywords: Glycoengineering; Glycosylhydrolase; Glycosyltransferase; Yeast surface display
المشرفين على المادة: 0 (Glycoproteins)
0 (Recombinant Proteins)
تواريخ الأحداث: Date Created: 20211006 Date Completed: 20220106 Latest Revision: 20220106
رمز التحديث: 20240628
DOI: 10.1007/978-1-0716-1685-7_9
PMID: 34611870
قاعدة البيانات: MEDLINE