دورية أكاديمية

Metabolic Labeling of Primary Neurons Using Carbohydrate Click Chemistry.

التفاصيل البيبلوغرافية
العنوان: Metabolic Labeling of Primary Neurons Using Carbohydrate Click Chemistry.
المؤلفون: Hayes JM; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland., O'Hara DM; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland., Davey GP; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. gdavey@tcd.ie.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2370, pp. 315-322.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Carbohydrates* , Click Chemistry* , Neurons*/chemistry, Animals ; Glycosylation ; Polysaccharides ; Rats
مستخلص: Glycans play an important role in many neuronal processes, such as neurotransmitter release and reuptake, cell-cell communication and adhesion, modulation of ion channel activity, and immune function. Carbohydrate click chemistry is a powerful technique for studying glycan function and dynamics in vitro, in vivo, and ex vivo. Here, we use commercially available synthetic tetraacetylated azido sugars, copper and copper-free click chemistry to metabolically label and analyze primary rat cortical neurons. In addition, we use high resolution confocal and STED microscopy to image and analyze different forms of glycosylation in ultrahigh resolution. We observe different patterns of GlcNAz, GalNAz, and ManNAz distribution at different stages of neuronal development. We also observe highly sialylated structures on the neuronal plasma membrane, which warrant further investigation.
(© 2022. Springer Science+Business Media, LLC, part of Springer Nature.)
References: Takeuchi Y, Morise J, Morita I, Takematsu H, Oka S (2015) Role of site-specific N-glycans expressed on GluA2 in the regulation of cell surface expression of AMPA-type glutamate receptors. PLoS One 10(8):e0135644. https://doi.org/10.1371/journal.pone.0135644. (PMID: 10.1371/journal.pone.0135644262710464535760)
Kandel MB, Yamamoto S, Midorikawa R, Morise J, Wakazono Y, Oka S, Takamiya K (2018) N-glycosylation of the AMPA-type glutamate receptor regulates cell surface expression and tetramer formation affecting channel function. J Neurochem 147(6):730–747. https://doi.org/10.1111/jnc.14565. (PMID: 10.1111/jnc.1456530092607)
Rickert KW, Imperiali B (1995) Analysis of the conserved glycosylation site in the nicotinic acetylcholine receptor: potential roles in complex assembly. Chem Biol 2(11):751–759. https://doi.org/10.1016/1074-5521(95)90103-5. (PMID: 10.1016/1074-5521(95)90103-59383482)
Poulter L, Earnest JP, Stroud RM, Burlingame AL (1989) Structure, oligosaccharide structures, and posttranslationally modified sites of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 86(17):6645–6649. https://doi.org/10.1073/pnas.86.17.6645. (PMID: 10.1073/pnas.86.17.66452771948297901)
daCosta CJ, Kaiser DE, Baenziger JE (2005) Role of glycosylation and membrane environment in nicotinic acetylcholine receptor stability. Biophys J 88(3):1755–1764. https://doi.org/10.1529/biophysj.104.052944. (PMID: 10.1529/biophysj.104.05294415626708)
Scott H, Panin VM (2014) N-glycosylation in regulation of the nervous system. Adv Neurobiol 9:367–394. https://doi.org/10.1007/978-1-4939-1154-7_17. (PMID: 10.1007/978-1-4939-1154-7_17251513884476505)
Scott H, Panin VM (2014) The role of protein N-glycosylation in neural transmission. Glycobiology 24(5):407–417. https://doi.org/10.1093/glycob/cwu015. (PMID: 10.1093/glycob/cwu015246430843976283)
Grunewald S, Matthijs G, Jaeken J (2002) Congenital disorders of glycosylation: a review. Pediatr Res 52(5):618–624. https://doi.org/10.1203/00006450-200211000-00003. (PMID: 10.1203/00006450-200211000-0000312409504)
Marquardt T, Denecke J (2003) Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 162(6):359–379. https://doi.org/10.1007/s00431-002-1136-0. (PMID: 10.1007/s00431-002-1136-012756558)
Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5(3):195–208. https://doi.org/10.1038/nrn1349. (PMID: 10.1038/nrn134914976519)
Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V (2018) High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. Elife 7. https://doi.org/10.7554/eLife.38309.
Linnartz B, Kopatz J, Tenner AJ, Neumann H (2012) Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J Neurosci 32(3):946–952. https://doi.org/10.1523/JNEUROSCI.3830-11.2012. (PMID: 10.1523/JNEUROSCI.3830-11.2012222628924037907)
Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315):1125–1128. https://doi.org/10.1126/science.276.5315.1125. (PMID: 10.1126/science.276.5315.11259173543)
Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430(7002):873–877. https://doi.org/10.1038/nature02791. (PMID: 10.1038/nature0279115318217)
Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876):664–667. https://doi.org/10.1126/science.1155106. (PMID: 10.1126/science.1155106184513022701225)
Laughlin ST, Bertozzi CR (2009) Imaging the glycome. Proc Natl Acad Sci U S A 106(1):12–17. https://doi.org/10.1073/pnas.0811481106. (PMID: 10.1073/pnas.081148110619104067)
Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104(43):16793–16797. https://doi.org/10.1073/pnas.0707090104. (PMID: 10.1073/pnas.0707090104179426822040404)
Meldal M, Tornoe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108(8):2952–3015. https://doi.org/10.1021/cr0783479. (PMID: 10.1021/cr078347918698735)
Presolski SI, Hong VP, Finn MG (2011) Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr Protoc Chem Biol 3(4):153–162. https://doi.org/10.1002/9780470559277.ch110148. (PMID: 10.1002/9780470559277.ch110148228446523404492)
Kang K, Joo S, Choi JY, Geum S, Hong SP, Lee SY, Kim YH, Kim SM, Yoon MH, Nam Y, Lee KB, Lee HY, Choi IS (2015) Tissue-based metabolic labeling of polysialic acids in living primary hippocampal neurons. Proc Natl Acad Sci U S A 112(3):E241–E248. https://doi.org/10.1073/pnas.1419683112. (PMID: 10.1073/pnas.1419683112255646664311863)
فهرسة مساهمة: Keywords: Click chemistry; Confocal microscopy; Glycosylation; Neurons; STED imaging; Sialylation
المشرفين على المادة: 0 (Carbohydrates)
0 (Polysaccharides)
تواريخ الأحداث: Date Created: 20211006 Date Completed: 20211220 Latest Revision: 20211220
رمز التحديث: 20221213
DOI: 10.1007/978-1-0716-1685-7_16
PMID: 34611877
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-1685-7_16