دورية أكاديمية

Proximal and distal spinal neurons innervating multiple synergist and antagonist motor pools.

التفاصيل البيبلوغرافية
العنوان: Proximal and distal spinal neurons innervating multiple synergist and antagonist motor pools.
المؤلفون: Ronzano R; Department of Neuromuscular Diseases, University College London, London, United Kingdom., Lancelin C; Department of Neuromuscular Diseases, University College London, London, United Kingdom., Bhumbra GS; Department of Neuroscience Physiology and Pharmacology, University College London, London, United Kingdom., Brownstone RM; Department of Neuromuscular Diseases, University College London, London, United Kingdom., Beato M; Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
المصدر: ELife [Elife] 2021 Nov 02; Vol. 10. Date of Electronic Publication: 2021 Nov 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
مواضيع طبية MeSH: Movement*, Interneurons/*physiology , Motor Neurons/*physiology , Spinal Cord/*physiology, Animals ; Hindlimb/physiology ; Lumbosacral Region/physiology ; Mice
مستخلص: Motoneurons (MNs) control muscle contractions, and their recruitment by premotor circuits is tuned to produce accurate motor behaviours. To understand how these circuits coordinate movement across and between joints, it is necessary to understand whether spinal neurons pre-synaptic to motor pools have divergent projections to more than one MN population. Here, we used modified rabies virus tracing in mice to investigate premotor interneurons projecting to synergist flexor or extensor MNs, as well as those projecting to antagonist pairs of muscles controlling the ankle joint. We show that similar proportions of premotor neurons diverge to synergist and antagonist motor pools. Divergent premotor neurons were seen throughout the spinal cord, with decreasing numbers but increasing proportion with distance from the hindlimb enlargement. In the cervical cord, divergent long descending propriospinal neurons were found in contralateral lamina VIII, had large somata, were neither glycinergic, nor cholinergic, and projected to both lumbar and cervical MNs. We conclude that distributed spinal premotor neurons coordinate activity across multiple motor pools and that there are spinal neurons mediating co-contraction of antagonist muscles.
Competing Interests: RR, CL, GB, RB, MB No competing interests declared
(© 2021, Ronzano et al.)
References: Brain Res. 2009 Dec 11;1302:76-84. (PMID: 19766612)
Development. 2005 Dec;132(24):5461-9. (PMID: 16291784)
Front Neuroanat. 2017 Feb 06;11:5. (PMID: 28220062)
Eur J Neurosci. 2001 Nov;14(10):1727-38. (PMID: 11860467)
Neurology. 2000 Nov 14;55(9):1305-9. (PMID: 11087772)
Neuron. 2017 May 3;94(3):626-641.e4. (PMID: 28472660)
Brain Res. 1987 Feb 24;404(1-2):382-8. (PMID: 3032341)
J Neurosci. 2010 Dec 15;30(50):17041-50. (PMID: 21159974)
Muscle Nerve. 1998 Oct;21(10):1256-64. (PMID: 9736053)
J Physiol. 1993 May;464:575-93. (PMID: 8229819)
Neuron. 2013 Jan 23;77(2):346-60. (PMID: 23352170)
Development. 2007 Jan;134(2):357-66. (PMID: 17166926)
Neuroscience. 2020 Dec 1;450:135-141. (PMID: 32446854)
Neuron. 2015 Dec 16;88(6):1121-1135. (PMID: 26687221)
Nat Neurosci. 2014 Apr;17(4):586-93. (PMID: 24609464)
Brain Res. 1976 Jun 11;109(2):395-8. (PMID: 1276923)
Neuroscience. 2013 Jun 14;240:83-97. (PMID: 23454541)
J Comp Neurol. 1995 Jun 5;356(3):457-80. (PMID: 7642806)
Front Neurosci. 2009 Dec 15;3(3):344-9. (PMID: 20198151)
PLoS Biol. 2018 Mar 14;16(3):e2003586. (PMID: 29538375)
Brain. 1996 Dec;119 ( Pt 6):1809-33. (PMID: 9009990)
Curr Opin Neurobiol. 2009 Dec;19(6):601-7. (PMID: 19828310)
PLoS One. 2016 Mar 21;11(3):e0152094. (PMID: 26999665)
J Comp Neurol. 1979 Dec 1;188(3):443-54. (PMID: 114558)
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2448-53. (PMID: 17287343)
Neuron. 2014 Apr 2;82(1):138-50. (PMID: 24698273)
Neuron. 2001 Feb;29(2):367-84. (PMID: 11239429)
Exp Brain Res. 1974;21(2):169-94. (PMID: 4373265)
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8643-8648. (PMID: 28739958)
Neuron. 2011 Aug 25;71(4):617-31. (PMID: 21867879)
Neuron. 2008 Oct 9;60(1):84-96. (PMID: 18940590)
Adv Virus Res. 2011;79:165-202. (PMID: 21601048)
J Comp Neurol. 1990 Jun 15;296(3):496-505. (PMID: 2358549)
Nat Commun. 2018 Feb 5;9(1):504. (PMID: 29402935)
Adv Neurol. 1983;39:347-72. (PMID: 6419553)
Curr Opin Neurobiol. 2015 Aug;33:156-65. (PMID: 25912883)
Cell Metab. 2011 Feb 2;13(2):195-204. (PMID: 21284986)
J Neurosci. 2004 Feb 4;24(5):1255-64. (PMID: 14762144)
Brain Res. 1987 Feb 24;404(1-2):395-400. (PMID: 3567583)
J Neurosci. 2014 Jul 9;34(28):9404-17. (PMID: 25009272)
J Comp Neurol. 2005 Dec 12;493(2):177-92. (PMID: 16255029)
Neuron. 2016 Dec 7;92(5):1063-1078. (PMID: 27866798)
J Physiol. 1903 Feb 23;29(1):58-96. (PMID: 16992657)
J Neurosci. 1996 Feb 1;16(3):974-82. (PMID: 8558266)
J Neurosci. 2010 Jan 27;30(4):1322-36. (PMID: 20107059)
Elife. 2021 Aug 16;10:. (PMID: 34396953)
J Physiol. 1992 Oct;456:373-91. (PMID: 1338100)
Nat Commun. 2017 Dec 6;8(1):1963. (PMID: 29213073)
Neuron. 2014 Feb 19;81(4):766-78. (PMID: 24486087)
Curr Biol. 2015 Jun 1;25(11):1426-36. (PMID: 25959968)
Exp Brain Res. 1980;40(3):241-6. (PMID: 7428879)
J Comp Neurol. 2005 Feb 7;482(2):123-41. (PMID: 15611994)
Neural Dev. 2009 Jun 19;4:21. (PMID: 19545367)
Brain Res. 1969 Jul;14(2):321-30. (PMID: 5794910)
J Neurosci. 2012 Jan 25;32(4):1156-70. (PMID: 22279202)
J Neurophysiol. 1956 Jan;19(1):75-98. (PMID: 13286723)
Nature. 2013 Aug 1;500(7460):85-8. (PMID: 23812590)
Neuron. 2001 Feb;29(2):385-99. (PMID: 11239430)
Nat Neurosci. 2010 Sep;13(9):1066-74. (PMID: 20680010)
Front Comput Neurosci. 2013 Apr 29;7:51. (PMID: 23641212)
Neuron. 2016 Feb 17;89(4):711-24. (PMID: 26804990)
Nat Neurosci. 2001 Nov;4 Suppl:1183-91. (PMID: 11687828)
Exp Brain Res. 2002 Oct;146(3):282-92. (PMID: 12232685)
Neuron. 2007 Mar 1;53(5):639-47. (PMID: 17329205)
Neuron. 2009 Dec 10;64(5):645-62. (PMID: 20005822)
J Neurosci. 2021 Feb 17;41(7):1582-1596. (PMID: 33372061)
Cell Rep. 2020 Jun 9;31(10):107741. (PMID: 32521266)
معلومات مُعتمدة: 110193/Z/15/Z United Kingdom WT_ Wellcome Trust; BB/L001454 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; MR/R011494/1 United Kingdom MRC_ Medical Research Council; United Kingdom WT_ Wellcome Trust; 110193 United Kingdom WT_ Wellcome Trust
فهرسة مساهمة: Keywords: motoneurons; mouse; neuroscience; premotor interneurons; rabies; spinal cord; trans-synaptic tracing
Local Abstract: [plain-language-summary] We are able to walk, run and move our bodies in other ways thanks to circuits of neurons in the spinal cord that control how and when our muscles contract and relax. Neurons known as premotor neurons receive information from other parts of the central nervous system and control the activities of groups (known as pools) of motor neurons that directly activate individual muscles. To bend a joint or move our limbs, the movement of different muscles needs to be coordinated. Previous studies have focused on how premotor neurons activate a pool of motor neurons to contract a single muscle, but it remains unclear if and how some of these premotor neurons can co-activate different pools of motor neurons to control more than one muscle at the same time. Here, Ronzano, Lancelin et al. injected mice with modified rabies viruses labelled with different fluorescent markers to build a map of the premotor neurons that connect to motor neurons controlling the leg muscles. The experiments revealed that many of the individual premotor neurons in the spinal cords of mice connected to different pools of motor neurons. In the upper region of the spinal cord – which is primarily responsible for controlling the front legs – some large premotor neurons activated motor neurons in this region as well as other motor neurons in a lower region of the spinal cord that controls the back legs. This suggests that these large premotor neurons may be important for coordinating muscles contraction within and between limbs. Many neurological diseases are associated with difficulties in contracting or relaxing muscles. For example, individuals with a condition called dystonia experience disorganized and excessive muscle contractions that prevent them from being able to bend and straighten their joints properly. By helping us to understand how the body coordinates the activities of multiple limbs at the same time, the findings of Ronzano, Lancelin et al. may lead to new lines of research that ultimately improve the quality of life of patients with dystonia and other similar neurological diseases.
تواريخ الأحداث: Date Created: 20211102 Date Completed: 20220124 Latest Revision: 20230223
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8631798
DOI: 10.7554/eLife.70858
PMID: 34727018
قاعدة البيانات: MEDLINE
الوصف
تدمد:2050-084X
DOI:10.7554/eLife.70858