دورية أكاديمية

Elucidating the role of the kinase activity of endothelial cell focal adhesion kinase in angiocrine signalling and tumour growth.

التفاصيل البيبلوغرافية
العنوان: Elucidating the role of the kinase activity of endothelial cell focal adhesion kinase in angiocrine signalling and tumour growth.
المؤلفون: Newport E; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Pedrosa AR; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Lees D; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Dukinfield M; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Carter E; Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Gomez-Escudero J; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Casado P; Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Rajeeve V; Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Reynolds LE; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., R Cutillas P; Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Duffy SW; Wolfson Institute, London, UK., De Luxán Delgado B; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK., Hodivala-Dilke K; Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
المصدر: The Journal of pathology [J Pathol] 2022 Feb; Vol. 256 (2), pp. 235-247. Date of Electronic Publication: 2021 Dec 20.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley And Sons Country of Publication: England NLM ID: 0204634 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-9896 (Electronic) Linking ISSN: 00223417 NLM ISO Abbreviation: J Pathol Subsets: MEDLINE
أسماء مطبوعة: Publication: Chichester : John Wiley And Sons
Original Publication: London, Oliver & Boyd.
مواضيع طبية MeSH: Neovascularization, Physiologic*, Endothelial Cells/*enzymology , Focal Adhesion Kinase 1/*metabolism , Melanoma, Experimental/*enzymology , Skin Neoplasms/*enzymology, Angiogenesis Inhibitors/pharmacology ; Animals ; Antibiotics, Antineoplastic/pharmacology ; Apoptosis ; Cell Line, Tumor ; Cell Proliferation ; Cytokines/metabolism ; Doxorubicin/pharmacology ; Drug Resistance, Neoplasm ; Female ; Focal Adhesion Kinase 1/antagonists & inhibitors ; Focal Adhesion Kinase 1/genetics ; Humans ; Male ; Melanoma, Experimental/drug therapy ; Melanoma, Experimental/genetics ; Melanoma, Experimental/pathology ; Mice, Inbred C57BL ; Mice, Knockout ; Protein Kinase Inhibitors/pharmacology ; Signal Transduction ; Skin Neoplasms/drug therapy ; Skin Neoplasms/genetics ; Skin Neoplasms/pathology ; Tumor Burden ; Mice
مستخلص: A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
(© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.)
References: Lechertier T, Hodivala-Dilke K. Focal adhesion kinase and tumour angiogenesis. J Pathol 2012; 226: 404-412.
Brami-Cherrier K, Gervasi N, Arsenieva D, et al. FAK dimerization controls its kinase-dependent functions at focal adhesions. EMBO J 2014; 33: 356-370.
Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 2014; 14: 598-610.
Golubovskaya VM. Focal adhesion kinase as a cancer therapy target. Anticancer Agents Med Chem 2010; 10: 735-741.
Zhou J, Aponte-Santamaría C, Sturm S, et al. Mechanism of focal adhesion kinase mechanosensing. PLoS Comput Biol 2015; 11: e1004593.
Lawson C, Schlaepfer DD. pHocal adhesion kinase regulation is on a FERM foundation. J Cell Biol 2013; 202: 833-836.
Luo M, Zhao X, Chen S, et al. Distinct FAK activities determine progenitor and mammary stem cell characteristics. Cancer Res 2013; 73: 5591-5602.
Ma WW. Development of focal adhesion kinase inhibitors in cancer therapy. Anticancer Agents Med Chem 2011; 11: 638-642.
Yoon H, Dehart JP, Murphy JM, et al. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem 2015; 63: 114-128.
Mabeta P. PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation. Acta Pharm 2016; 66: 399-410.
Gerber DE, Camidge DR, Morgensztern D, et al. Phase 2 study of the focal adhesion kinase inhibitor defactinib (VS-6063) in previously treated advanced KRAS mutant non-small cell lung cancer. Lung Cancer 2020; 139: 60-67.
Roberts WG, Ung E, Whalen P, et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 2008; 68: 1935-1944.
Schultze A, Fiedler W. Clinical importance and potential use of small molecule inhibitors of focal adhesion kinase. Anticancer Agents Med Chem 2011; 11: 593-599.
Study of FAK (defactinib) and PD-1 (pembrolizumab) inhibition in advanced solid malignancies (FAK-PD1). Available from: https://ClinicalTrials.gov/show/NCT02758587 [Accessed March 19, 2018].
Phase I trial of VS-6063 and RO5126766. Available from: https://ClinicalTrials.gov/show/NCT03875820 [Accessed September 11, 2020].
Cao Z, Ding BS, Guo P, et al. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 2014; 25: 350-365.
Tavora B, Reynolds LE, Batista S, et al. Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature 2014; 514: 112-116.
Bald T, Quast T, Landsberg J, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014; 507: 109-113.
Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature 2016; 529: 316-325.
Carlson P, Dasgupta A, Grzelak CA, et al. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat Cell Biol 2019; 21: 238-250.
Singhal M, Augustin HG. Beyond angiogenesis: exploiting angiocrine factors to restrict tumor progression and metastasis. Cancer Res 2020; 80: 659-662.
Pasquier J, Ghiabi P, Chouchane L, et al. Angiocrine endothelium: from physiology to cancer. J Transl Med 2020; 18: 52.
Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010; 10: 138-146.
Kim YN, Koo KH, Sung JY, et al. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol 2012; 2012: 306879.
Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 2005; 24: 425-439.
Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int 2015; 2015: 690690.
Tavora B, Batista S, Reynolds LE, et al. Endothelial FAK is required for tumour angiogenesis. EMBO Mol Med 2010; 2: 516-528.
Pedrosa AR, Bodrug N, Gomez-Escudero J, et al. Tumor angiogenesis is differentially regulated by phosphorylation of endothelial cell focal adhesion kinase tyrosines-397 and -861. Cancer Res 2019; 79: 4371-4386.
Kostourou V, Lechertier T, Reynolds LE, et al. FAK-heterozygous mice display enhanced tumour angiogenesis. Nat Commun 2013; 4: 2020.
Alexopoulou AN, Lees DM, Bodrug N, et al. Focal Adhesion Kinase (FAK) tyrosine 397E mutation restores the vascular leakage defect in endothelium-specific FAK-kinase dead mice. J Pathol 2017; 242: 358-370.
Zhao X, Peng X, Sun S, et al. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. J Cell Biol 2010; 189: 955-965.
Lim ST, Chen XL, Tomar A, et al. Knock-in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility-polarity but not cell proliferation. J Biol Chem 2010; 285: 21526-21536.
Lee J, Borboa AK, Chun HB, et al. Conditional deletion of the focal adhesion kinase FAK alters remodeling of the blood-brain barrier in glioma. Cancer Res 2010; 70: 10131-10140.
Schmidt TT, Tauseef M, Yue L, et al. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities. Am J Physiol Lung Cell Mol Physiol 2013; 305: L291-L300.
Jean C, Chen XL, Nam JO, et al. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol 2014; 204: 247-263.
Chen XL, Nam JO, Jean C, et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell 2012; 22: 146-157.
Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455-2465.
Toutounchian JJ, Pagadala J, Miller DD, et al. Novel small molecule JP-153 targets the Src-FAK-paxillin signaling complex to inhibit VEGF-induced retinal angiogenesis. Mol Pharmacol 2017; 91: 1-13.
Alexopoulou AN, Ho-Yen CM, Papalazarou V, et al. Tumour-associated endothelial-FAK correlated with molecular sub-type and prognostic factors in invasive breast cancer. BMC Cancer 2014; 14: 237.
Hildebrand JD, Schaller MD, Parsons JT. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J Cell Biol 1993; 123: 993-1005.
McLean GW, Komiyama NH, Serrels B, et al. Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes Dev 2004; 18: 2998-3003.
Tavora B, Batista S, Alexopoulou AN, et al. Generation of point-mutant FAK knockin mice. Genesis 2014; 52: 907-915.
Reynolds LE, Hodivala-Dilke KM. Primary mouse endothelial cell culture for assays of angiogenesis. Methods Mol Med 2006; 120: 503-509.
May T, Mueller PP, Weich H, et al. Establishment of murine cell lines by constitutive and conditional immortalization. J Biotechnol 2005; 120: 99-110.
Diggle P, Heagerty P, Liang KY, et al. The Analysis of Longitudinal Data. Oxford University Press: Oxford, 2002.
Motlagh NSH, Parvin P, Ghasemi F, et al. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin. Biomed Opt Express 2016; 7: 2400-2406.
Turner MD, Nedjai B, Hurst T, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843: 2563-2582.
Borriello F, Galdiero MR, Varricchi G, et al. Innate immune modulation by GM-CSF and IL-3 in health and disease. Int J Mol Sci 2019; 20: 834.
Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 2016; 48: e242.
Liu Y, Cai Y, Liu L, et al. Crucial biological functions of CCL7 in cancer. Peer J 2018; 6: e4928.
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100: 481-489.
Zininga T, Ramatsui L, Shonhai A. Heat shock proteins as immunomodulants. Molecules 2018; 23: 2846.
Bottazzi B, Inforzato A, Messa M, et al. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 2016; 64: 1416-1427.
Parente R, Clark SJ, Inforzato A, et al. Complement factor H in host defense and immune evasion. Cell Mol Life Sci 2017; 74: 1605-1624.
Perišić Nanut M, Sabotič J, Jewett A, et al. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol 2014; 5: 616.
Koo IC, Ohol YM, Wu P, et al. Role for lysosomal enzyme beta-hexosaminidase in the control of mycobacteria infection. Proc Natl Acad Sci U S A 2008; 105: 710-715.
Roh ME, Cosgrove M, Gorski K, et al. Off-targets effects underlie the inhibitory effect of FAK inhibitors on platelet activation: studies using Fak-deficient mice. J Thromb Haemost 2013; 11: 1776-1778.
Jones SF, Siu LL, Bendell JC, et al. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Invest New Drugs 2015; 33: 1100-1107.
ICR Phase I trial of VS-6063 and RO5126766; 2021. Available from: https://ClinicalTrials.gov/show/NCT03875820 [Accessed 11 September 2020].
Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2019; 47(D1): D442-D450.
Casado P, Cutillas PR. A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments. Mol Cell Proteomics 2011; 10: M110.003079.
Cutillas PR, Vanhaesebroeck B. Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol Cell Proteomics 2007; 6: 1560-1573.
معلومات مُعتمدة: 12007 United Kingdom CRUK_ Cancer Research UK; PG/18/75/34096 United Kingdom BHF_ British Heart Foundation; 18673 United Kingdom CRUK_ Cancer Research UK; MR/V009621/1 United Kingdom MRC_ Medical Research Council; 28990 United Kingdom CRUK_ Cancer Research UK
فهرسة مساهمة: Keywords: DNA-damaging therapy; FAK inhibitor; angiocrine signalling; cytokines; doxorubicin; endothelial cells; focal adhesion kinase activity
المشرفين على المادة: 0 (Angiogenesis Inhibitors)
0 (Antibiotics, Antineoplastic)
0 (Cytokines)
0 (Protein Kinase Inhibitors)
80168379AG (Doxorubicin)
EC 2.7.10.2 (Focal Adhesion Kinase 1)
EC 2.7.10.2 (PTK2 protein, human)
EC 2.7.10.2 (Ptk2 protein, mouse)
تواريخ الأحداث: Date Created: 20211107 Date Completed: 20220221 Latest Revision: 20240724
رمز التحديث: 20240725
DOI: 10.1002/path.5833
PMID: 34743335
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9896
DOI:10.1002/path.5833