دورية أكاديمية

Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community.

التفاصيل البيبلوغرافية
العنوان: Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community.
المؤلفون: Şimşek E; Department of Physics, Emory University, Atlanta, GA, 30322, USA.; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA., Dawson E; Department of Physics, Emory University, Atlanta, GA, 30322, USA., Rather PN; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.; Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322, USA.; Research Service, Atlanta VA Medical Center, Decatur, GA, 30033, USA., Kim M; Department of Physics, Emory University, Atlanta, GA, 30322, USA. minsu.kim@emory.edu.; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA. minsu.kim@emory.edu.
المصدر: The ISME journal [ISME J] 2022 Apr; Vol. 16 (4), pp. 1004-1011. Date of Electronic Publication: 2021 Nov 10.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101301086 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-7370 (Electronic) Linking ISSN: 17517362 NLM ISO Abbreviation: ISME J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: Gene Expression Regulation, Bacterial* , Proteus mirabilis*/genetics , Proteus mirabilis*/metabolism, Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Cell Movement
مستخلص: On a surface, microorganisms grow into a multi-cellular community. When a community becomes densely populated, cells migrate away to expand the community's territory. How microorganisms regulate surface motility to optimize expansion remains poorly understood. Here, we characterized surface motility of Proteus mirabilis. P. mirabilis is well known for its ability to expand its colony rapidly on a surface. Cursory visual inspection of an expanding colony suggests partial migration, i.e., one fraction of a population migrates while the other is sessile. Quantitative microscopic imaging shows that this migration pattern is determined by spatially inhomogeneous regulation of cell motility. Further analyses reveal that this spatial regulation is mediated by the Rcs system, which represses the expression of the motility regulator (FlhDC) in a nutrient-dependent manner. Alleviating this repression increases the colony expansion speed but results in a rapid drop in the number of viable cells, lowering population fitness. These findings collectively demonstrate how Rcs regulates cell motility dynamically to increase the fitness of an expanding bacterial population, illustrating a fundamental trade-off underlying bacterial colonization of a surface.
(© 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.)
References: Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75. (PMID: 10.1038/nrmicro.2016.94)
Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24. (PMID: 1906775110.1111/j.1574-6976.2008.00150.x)
Rumbaugh KP, Sauer K. Biofilm dispersion. Nat Rev Microbiol. 2020;18:571–86. (PMID: 32533131856477910.1038/s41579-020-0385-0)
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22. (PMID: 1033498010.1126/science.284.5418.1318)
Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416:740–3. (PMID: 1196155610.1038/416740a)
de Carvalho CCCR. Marine biofilms: a successful microbial strategy with economic implications. Front Mar Sci. 2018;5:126.
McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10:39–50. (PMID: 10.1038/nrmicro2695)
Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, et al. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA. 2008;105:19052–9. (PMID: 19060196261471410.1073/pnas.0800375105)
Yan J, Monaco H, Xavier JB. The ultimate guide to bacterial swarming: an experimental model to study the evolution of cooperative behavior. Annu Rev Microbiol. 2019;73:293–312. (PMID: 31180806742886010.1146/annurev-micro-020518-120033)
Gokhale S, Conwill A, Ranjan T, Gore J. Migration alters oscillatory dynamics and promotes survival in connected bacterial populations. Nat Commun. 2018;9:5273. (PMID: 30531951628816010.1038/s41467-018-07703-y)
Hallatschek O, Fisher DS. Acceleration of evolutionary spread by long-range dispersal. Proc Natl Acad Sci USA. 2014;111:E4911–9. (PMID: 25368183424633210.1073/pnas.1404663111)
Birzu G, Hallatschek O, Korolev KS. Fluctuations uncover a distinct class of traveling waves. Proc Natl Acad Sci USA. 2018;115:E3645–54. (PMID: 29610340591081910.1073/pnas.1715737115)
Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, Kuehn S. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J. 2020;14:2007–18. (PMID: 32358533736781410.1038/s41396-020-0664-9)
Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, et al. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol. 2014;10:e1003979. (PMID: 25504059426336110.1371/journal.pcbi.1003979)
Patra P, Kissoon K, Cornejo I, Kaplan HB, Igoshin OA. Colony expansion of socially motile Myxococcus xanthus cells is driven by growth, motility, and exopolysaccharide production. PLoS Comput Biol. 2016;12:e1005010. (PMID: 27362260492889610.1371/journal.pcbi.1005010)
Chapman BB, Brönmark C, Nilsson J-Å, Hansson L-A. The ecology and evolution of partial migration. Oikos. 2011;120:1764–75. (PMID: 10.1111/j.1600-0706.2011.20131.x)
Lundberg P. Partial bird migration and evolutionarily stable strategies. J Theor Biol. 1987;125:351–60. (PMID: 10.1016/S0022-5193(87)80067-X)
Kokko H. Directions in modelling partial migration: how adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos. 2011;120:1826–37. (PMID: 10.1111/j.1600-0706.2011.19438.x)
Singh NJ, Leonardsson K. Partial migration and transient coexistence of migrants and residents in animal populations. PloS One. 2014;9:e94750. (PMID: 24722396398325310.1371/journal.pone.0094750)
Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol. 2012;10:743. (PMID: 23042564362103010.1038/nrmicro2890)
Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015;3. https://doi.org/10.1128/microbiolspec.UTI-0017-2013 .
Jones BV, Young R, Mahenthiralingam E, Stickler DJ. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun. 2004;72:3941–50. (PMID: 1521313842739210.1128/IAI.72.7.3941-3950.2004)
Li X, Zhao H, Lockatell CV, Drachenberg CB, Johnson DE, Mobley HL. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun. 2002;70:389–94. (PMID: 1174820512762810.1128/IAI.70.1.389-394.2002)
Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pr Urol. 2008;5:598–608. (PMID: 10.1038/ncpuro1231)
Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008;21:26–59. (PMID: 18202436222384510.1128/CMR.00019-07)
Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003;57:249–73. (PMID: 1452727910.1146/annurev.micro.57.030502.091014)
Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008;16:496–506. (PMID: 1877566010.1016/j.tim.2008.07.004)
Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44. (PMID: 20694026313501910.1038/nrmicro2405)
Wu Y, Jiang Y, Kaiser AD, Alber M. Self-organization in bacterial swarming: lessons from myxobacteria. Phys Biol. 2011;8:055003. (PMID: 2183280710.1088/1478-3975/8/5/055003)
Howery KE, Şimşek E, Kim M, Rather PN. Positive autoregulation of the flhDC operon in Proteus mirabilis. Res Microbiol. 2018;169:199–204. (PMID: 2958100710.1016/j.resmic.2018.02.005)
Little K, Austerman J, Zheng J, Gibbs KA. Cell shape and population migration are distinct steps of Proteus mirabilis swarming that are decoupled on high-percentage agar. J Bacteriol. 2019;201:e00726–18. (PMID: 30858303650965410.1128/JB.00726-18)
Furness RB, Fraser GM, Hay NA, Hughes C. Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol. 1997;179:5585–8. (PMID: 928701717943310.1128/jb.179.17.5585-5588.1997)
Claret L, Hughes C. Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol. 2000;303:467–78. (PMID: 1105428410.1006/jmbi.2000.4149)
Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389:827–9. (PMID: 10.1038/39827)
Andac T, Weigmann P, Velu SKP, Pinçe E, Volpe G, Volpe G, et al. Active matter alters the growth dynamics of coffee rings. Soft Matter. 2019;15:1488–96. (PMID: 3057063310.1039/C8SM01350K)
Nellimoottil TT, Rao PN, Ghosh SS, Chattopadhyay A. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria. Langmuir. 2007;23:8655–8. (PMID: 1762808310.1021/la7006205)
Clemmer KM, Rather PN. Regulation of flhDC expression in Proteus mirabilis. Res Microbiol. 2007;158:295–302. (PMID: 1732035510.1016/j.resmic.2006.11.010)
Howery KE, Clemmer KM, Rather PN. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet. 2016;62:775–89. (PMID: 2693615310.1007/s00294-016-0579-1)
Howery KE, Clemmer KM, Şimşek E, Kim M, Rather PN. Regulation of the min cell division inhibition complex by the Rcs phosphorelay in Proteus mirabilis. J Bacteriol. 2015;197:2499–507. (PMID: 25986901451883910.1128/JB.00094-15)
Wang Q, Zhao Y, McClelland M, Harshey RM. The RcsCDB signaling system and swarming motility in Salmonella enterica Serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol. 2007;189:8447–57. (PMID: 17905992216892110.1128/JB.01198-07)
Samanta P, Clark ER, Knutson K, Horne SM, Prüß BM. OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm. BMC Microbiol. 2013;13:182. (PMID: 23914787375069310.1186/1471-2180-13-182)
Girgis HS, Liu Y, Ryu WS, Tavazoie S. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 2007;3:e154. (PMID: 197633310.1371/journal.pgen.0030154)
Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanié-Cornet MP, et al. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol. 2003;49:823–32. (PMID: 1286486210.1046/j.1365-2958.2003.03601.x)
Rieck VT, Palumbo SA, Witter LD. Glucose availability and the growth rate of colonies of Pseudomonas fluorescens. J Gen Microbiol. 1973;74:1–8. (PMID: 463297710.1099/00221287-74-1-1)
Shao X, Mugler A, Kim J, Jeong HJ, Levin BR, Nemenman I. Growth of bacteria in 3-d colonies. PLoS Comput Biol. 2017;13:e1005679. (PMID: 28749935554976510.1371/journal.pcbi.1005679)
Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. Elife. 2019;8:e41093. (PMID: 30855227641137010.7554/eLife.41093)
Lavrentovich MO, Koschwanez JH, Nelson DR. Nutrient shielding in clusters of cells. Phys Rev E Stat Nonlin Soft Matter Phys. 2013;87:062703. -. (PMID: 23848711412275610.1103/PhysRevE.87.062703)
Dal Co A, van Vliet S, Ackermann M. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos Trans R Soc Lond B Biol Sci. 2019;374:20190080. (PMID: 31587651679244010.1098/rstb.2019.0080)
Huang YH, Ferrières L, Clarke DJ. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol. 2006;157:206–12. (PMID: 1642777210.1016/j.resmic.2005.11.005)
Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol. 2005;59:379–405. (PMID: 1615317410.1146/annurev.micro.59.050405.101230)
Fraebel DT, Mickalide H, Schnitkey D, Merritt J, Kuhlman TE, Kuehn S. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife. 2017;6:e24669. (PMID: 28346136544187610.7554/eLife.24669)
Yi X, Dean AM. Phenotypic plasticity as an adaptation to a functional trade-off. Elife. 2016;5:e19307. (PMID: 27692064507283810.7554/eLife.19307)
van Ditmarsch D, Boyle KE, Sakhtah H, Oyler JE, Nadell CD, Déziel É, et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 2013;4:697–708. (PMID: 23954787377046510.1016/j.celrep.2013.07.026)
Auer GK, Oliver PM, Rajendram M, Lin T-Y, Yao Q, Jensen GJ, et al. Bacterial swarming reduces Proteus mirabilis and Vibrio parahaemolyticus cell stiffness and increases β-Lactam susceptibility. mBio. 2019;10:e00210–19. (PMID: 31594808678686310.1128/mBio.00210-19)
Kaiser D. Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol. 2007;17:R561–R70. (PMID: 1763735910.1016/j.cub.2007.04.050)
Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J Bacteriol. 2007;189:950–7. (PMID: 1712233610.1128/JB.01294-06)
Dong T, Joyce C, Schellhorn H. The role of RpoS in bacterial adaptation. In: El-Sharoud W, editor. Bacterial physiology. Heidelberg: Springer, Berlin; 2008. pp 313-37.
Phaiboun A, Zhang Y, Park B, Kim M. Survival kinetics of starving bacteria is biphasic and density-dependent. PLoS Comput Biol. 2015;11:e1004198. (PMID: 25838110438337710.1371/journal.pcbi.1004198)
Majdalani N, Hernandez D, Gottesman S. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol. 2002;46:813–26. (PMID: 1241083810.1046/j.1365-2958.2002.03203.x)
Peterson CN, Carabetta VJ, Chowdhury T, Silhavy TJ. LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol. 2006;188:3175–81. (PMID: 16621809144743510.1128/JB.188.9.3175-3181.2006)
Lok T, Overdijk O, Piersma T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol Lett. 2015;11:20140944. (PMID: 25589489432115710.1098/rsbl.2014.0944)
Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, Mitropolsky M, et al. Costs of migratory decisions: a comparison across eight white stork populations. Sci Adv. 2016;2:e1500931. (PMID: 26844294473727110.1126/sciadv.1500931)
Rankin MA, Burchsted JCA. The cost of migration in insects. Annu Rev Entomol. 1992;37:533–59. (PMID: 10.1146/annurev.en.37.010192.002533)
Ni B, Colin R, Link H, Endres RG, Sourjik V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA. 2020;117:595–601. (PMID: 3187117310.1073/pnas.1910849117)
Amsler CD, Cho M, Matsumura P. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol. 1993;175:6238–44. (PMID: 840779620671910.1128/jb.175.19.6238-6244.1993)
Yokota T, Gots JS. Requirement of adenosine 3’, 5’-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1970;103:513–6. (PMID: 431731624811210.1128/jb.103.2.513-516.1970)
Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, et al. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol. 1999;181:7500–8. (PMID: 106012079420710.1128/JB.181.24.7500-7508.1999)
Silverman M, Simon M. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J Bacteriol. 1974;120:1196–203. (PMID: 437343824589910.1128/jb.120.3.1196-1203.1974)
Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. Bioessays. 2008;30:542–55. (PMID: 18478531248626010.1002/bies.20769)
Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216–26.
Ferrières L, Clarke DJ. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol. 2003;50:1665–82. (PMID: 1465164610.1046/j.1365-2958.2003.03815.x)
Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37:849–71. (PMID: 2348040610.1111/1574-6976.12018)
معلومات مُعتمدة: I01 BX001725 United States BX BLRD VA; IK6 BX004470 United States BX BLRD VA
المشرفين على المادة: 0 (Bacterial Proteins)
تواريخ الأحداث: Date Created: 20211111 Date Completed: 20220412 Latest Revision: 20230402
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC8940935
DOI: 10.1038/s41396-021-01148-w
PMID: 34759303
قاعدة البيانات: MEDLINE
الوصف
تدمد:1751-7370
DOI:10.1038/s41396-021-01148-w