دورية أكاديمية

Focal disruption of DNA methylation dynamics at enhancers in IDH-mutant AML cells.

التفاصيل البيبلوغرافية
العنوان: Focal disruption of DNA methylation dynamics at enhancers in IDH-mutant AML cells.
المؤلفون: Wilson ER; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Helton NM; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Heath SE; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Fulton RS; McDonnell Genome Institute, Washington University, St. Louis, MO, USA., Payton JE; Department of Pathology and Immunology, Washington University, St. Louis, MO, USA., Welch JS; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Walter MJ; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Westervelt P; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., DiPersio JF; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Link DC; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Miller CA; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA.; McDonnell Genome Institute, Washington University, St. Louis, MO, USA., Ley TJ; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA., Spencer DH; Department of Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University, St. Louis, MO, USA. dspencer@wustl.edu.; Department of Pathology and Immunology, Washington University, St. Louis, MO, USA. dspencer@wustl.edu.; McDonnell Genome Institute, Washington University, St. Louis, MO, USA. dspencer@wustl.edu.
المصدر: Leukemia [Leukemia] 2022 Apr; Vol. 36 (4), pp. 935-945. Date of Electronic Publication: 2021 Dec 06.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group, Specialist Journals Country of Publication: England NLM ID: 8704895 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5551 (Electronic) Linking ISSN: 08876924 NLM ISO Abbreviation: Leukemia Subsets: MEDLINE
أسماء مطبوعة: Publication: 2000- : London : Nature Publishing Group, Specialist Journals
Original Publication: [Baltimore, Md.] : Williams & Wilkins, [c1987-
مواضيع طبية MeSH: DNA Methylation* , Leukemia, Myeloid, Acute*/genetics , Leukemia, Myeloid, Acute*/pathology, Humans ; Isocitrate Dehydrogenase/genetics ; Mutation ; Regulatory Sequences, Nucleic Acid
مستخلص: Recurrent mutations in IDH1 or IDH2 in acute myeloid leukemia (AML) are associated with increased DNA methylation, but the genome-wide patterns of this hypermethylation phenotype have not been comprehensively studied in AML samples. We analyzed whole-genome bisulfite sequencing data from 15 primary AML samples with IDH1 or IDH2 mutations, which identified ~4000 focal regions that were uniquely hypermethylated in IDH mut samples vs. normal CD34+ cells and other AMLs. These regions had modest hypermethylation in AMLs with biallelic TET2 mutations, and levels of 5-hydroxymethylation that were diminished in IDH and TET-mutant samples, indicating that this hypermethylation results from inhibition of TET-mediated demethylation. Focal hypermethylation in IDH mut AMLs occurred at regions with low methylation in CD34+ cells, implying that DNA methylation and demethylation are active at these loci. AML samples containing IDH and DNMT3A R882 mutations were significantly less hypermethylated, suggesting that IDH mut -associated hypermethylation is mediated by DNMT3A. IDH mut -specific hypermethylation was highly enriched for enhancers that form direct interactions with genes involved in normal hematopoiesis and AML, including MYC and ETV6. These results suggest that focal hypermethylation in IDH-mutant AML occurs by altering the balance between DNA methylation and demethylation, and that disruption of these pathways at enhancers may contribute to AML pathogenesis.
(© 2021. The Author(s).)
References: Charlton J, Jung EJ, Mattei AL, Bailly N, Liao J, Martin EJ, et al. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nat Genet. 2020;52:819–27. (PMID: 32514123741557610.1038/s41588-020-0639-9)
Ginno PA, Gaidatzis D, Feldmann A, Hoerner L, Imanci D, Burger L, et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat Commun. 2020;11:2680. (PMID: 32471981726021410.1038/s41467-020-16354-x)
Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2012;44:23. (PMID: 10.1038/ng.1009)
Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R, et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell. 2014;25:442–54. (PMID: 24656771401897610.1016/j.ccr.2014.02.010)
Spencer DH, Russler-Germain DA, Ketkar S, Helton NM, Lamprecht TL, Fulton RS, et al. CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression. Cell 2017;168:801–816.e13. (PMID: 28215704532858210.1016/j.cell.2017.01.021)
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67. (PMID: 21130701410584510.1016/j.ccr.2010.11.015)
Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. Plos Genet. 2012;8:e1002781. (PMID: 22737091338082810.1371/journal.pgen.1002781)
Losman J-A, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013;339:1621–5. (PMID: 2339309010.1126/science.1231677)
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30. (PMID: 21251613322930410.1016/j.ccr.2010.12.014)
Glass JL, Hassane D, Wouters BJ, Kunimoto H, Avellino R, Garrett-Bakelman FE, et al. Epigenetic identity in AML depends on disruption of nonpromoter regulatory elements and is affected by antagonistic effects of mutations in epigenetic modifiers. Cancer Discov. 2017;7:868–83. (PMID: 28408400554080210.1158/2159-8290.CD-16-1032)
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24. (PMID: 21723200319403910.1016/j.ccr.2011.06.001)
Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brüstle A, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012;488:656. (PMID: 22763442400589610.1038/nature11323)
Kats LM, Reschke M, Taulli R, Pozdnyakova O, Burgess K, Bhargava P, et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell. 2014;14:329–41. (PMID: 24440599438018810.1016/j.stem.2013.12.016)
Yoshimi A, Lin K-T, Wiseman DH, Rahman MA, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 2019;574:273–7. (PMID: 31578525685856010.1038/s41586-019-1618-0)
Ley TJ, Miller C, Ding L. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl J Med 2013;368:2059–74. (PMID: 2363499610.1056/NEJMoa1301689)
GitHub—huishenlab/biscuit: BISulfite-seq CUI Toolkit [Internet]. [cited 2021 Apr 7]. Available from: https://github.com/huishenlab/biscuit .
Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42:e69–e69. (PMID: 24561809400566010.1093/nar/gku154)
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87. (PMID: 23034086349141510.1186/gb-2012-13-10-r87)
Schmidl C, Rendeiro AF, Sheffield NC, Bock C. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat Methods. 2015;12:963–5. (PMID: 26280331458989210.1038/nmeth.3542)
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013; https://arxiv.org/abs/1303.3997 .
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5. (PMID: 27079975498787610.1093/nar/gkw257)
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137. (PMID: 18798982259271510.1186/gb-2008-9-9-r137)
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. (PMID: 25516281430204910.1186/s13059-014-0550-8)
Hahne F, Ivanek R. Methods in molecular biology. Methods Mol Biol Clifton N. J. 2016;1418:335–51. (PMID: 10.1007/978-1-4939-3578-9_16)
Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013;153:320–34. (PMID: 23582323376096710.1016/j.cell.2013.03.036)
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013;153:307–19. (PMID: 23582322365312910.1016/j.cell.2013.03.035)
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7. (PMID: 2704300210.1038/nbt.3519)
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000research. 2016;4:1521. (PMID: 471277410.12688/f1000research.7563.2)
Pabst C, Bergeron A, Lavallée V-P, Yeh J, Gendron P, Norddahl GL, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 2016;127:2018–27. (PMID: 2683424310.1182/blood-2015-11-683649)
MacRae T, Sargeant T, Lemieux S, Hébert J, Deneault É, Sauvageau G. RNA-Seq reveals spliceosome and proteasome genes as most consistent transcripts in human cancer cells. Plos One. 2013;8:e72884. (PMID: 24069164377577210.1371/journal.pone.0072884)
Ghasemi R, Struthers H, Wilson ER, Spencer DH. Contribution of CTCF binding to transcriptional activity at the HOXA locus in NPM1-mutant AML cells. Leukemia. 2020;1–13.
Zhang X, Jeong M, Huang X, Wang XQ, Wang X, Zhou W, et al. Large DNA methylation nadirs anchor chromatin loops maintaining hematopoietic stem cell identity. Mol Cell. 2020;78:506–521.e6. (PMID: 32386543735728110.1016/j.molcel.2020.04.018)
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–8. (PMID: 27467249584646510.1016/j.cels.2016.07.002)
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2. (PMID: 20110278283282410.1093/bioinformatics/btq033)
Klco JM, Miller CA, Griffith M, Petti A, Spencer DH, Ketkar-Kulkarni S, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. Jama 2015;314:811–22. (PMID: 26305651462125710.1001/jama.2015.9643)
Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc. 2017;12:2478–92. (PMID: 29120462594555010.1038/nprot.2017.124)
Wu H, Xu T, Feng H, Chen L, Li B, Yao B, et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015;43:gkv715. (PMID: 10.1093/nar/gkv715)
Kernaleguen M, Daviaud C, Shen Y, Bonnet E, Renault V, Deleuze J-F, et al. Epigenome editing, methods and protocols. Methods Mol. Biol. 2018;1767:311–49. (PMID: 2952414410.1007/978-1-4939-7774-1_18)
Smith AM, LaValle TA, Shinawi M, Ramakrishnan SM, Abel HJ, Hill CA, et al. Functional and epigenetic phenotypes of humans and mice with DNMT3A overgrowth syndrome. Nat Commun. 2021;12:4549. (PMID: 34315901831657610.1038/s41467-021-24800-7)
Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe J-S, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Gene Dev. 2013;27:2648–62. (PMID: 24285714387775510.1101/gad.232710.113)
Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J, et al. CBFβ-SMMHC inhibition triggers apoptosis by disrupting MYC chromatin dynamics in acute myeloid leukemia. Cell 2018;174:172–186.e21. (PMID: 29958106621156410.1016/j.cell.2018.05.048)
Bahr C, Paleske L, von, Uslu VV, Remeseiro S, Takayama N, Ng SW, et al. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 2018;553:515–20. (PMID: 2934213310.1038/nature25193)
Dixon G, Pan H, Yang D, Rosen BP, Jashari T, Verma N, et al. QSER1 protects DNA methylation valleys from de novo methylation. Science 2021;372:eabd0875. (PMID: 33833093818563910.1126/science.abd0875)
Weinberg DN, Papillon-Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan KN, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 2019;573:281–6. (PMID: 31485078674256710.1038/s41586-019-1534-3)
Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature 2012;489:75. (PMID: 22955617372134810.1038/nature11232)
معلومات مُعتمدة: R50 CA211782 United States CA NCI NIH HHS; P50 CA171963 United States CA NCI NIH HHS; P01 CA101937 United States CA NCI NIH HHS; R35 CA197561 United States CA NCI NIH HHS; K08 CA190815 United States CA NCI NIH HHS
المشرفين على المادة: EC 1.1.1.41 (Isocitrate Dehydrogenase)
تواريخ الأحداث: Date Created: 20211207 Date Completed: 20220406 Latest Revision: 20230223
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8979817
DOI: 10.1038/s41375-021-01476-y
PMID: 34873300
قاعدة البيانات: MEDLINE