دورية أكاديمية

An isotopic labeling approach linking natural products with biosynthetic gene clusters.

التفاصيل البيبلوغرافية
العنوان: An isotopic labeling approach linking natural products with biosynthetic gene clusters.
المؤلفون: McCaughey CS; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada., van Santen JA; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada., van der Hooft JJJ; Bioinformatics Group, Wageningen University, Wageningen, the Netherlands., Medema MH; Bioinformatics Group, Wageningen University, Wageningen, the Netherlands., Linington RG; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada. rliningt@sfu.ca.
المصدر: Nature chemical biology [Nat Chem Biol] 2022 Mar; Vol. 18 (3), pp. 295-304. Date of Electronic Publication: 2021 Dec 30.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Biological Products* , Micromonospora*, Biosynthetic Pathways/genetics ; Isotope Labeling ; Multigene Family
مستخلص: Major advances in genome sequencing and large-scale biosynthetic gene cluster (BGC) analysis have prompted an age of natural product discovery driven by genome mining. Still, connecting molecules to their cognate BGCs is a substantial bottleneck for this approach. We have developed a mass-spectrometry-based parallel stable isotope labeling platform, termed IsoAnalyst, which assists in associating metabolite stable isotope labeling patterns with BGC structure prediction to connect natural products to their corresponding BGCs. Here we show that IsoAnalyst can quickly associate both known metabolites and unknown analytes with BGCs to elucidate the complex chemical phenotypes of these biosynthetic systems. We validate this approach for a range of compound classes, using both the type strain Saccharopolyspora erythraea and an environmentally isolated Micromonospora sp. We further demonstrate the utility of this tool with the discovery of lobosamide D, a new and structurally unique member of the family of lobosamide macrolactams.
(© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Kalkreuter, E., Pan, G., Cepeda, A. J. & Shen, B. Targeting bacterial genomes for natural product discovery. Trends Pharmacol. Sci. 41, 13–26 (2020). (PMID: 3182235210.1016/j.tips.2019.11.002)
Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015). (PMID: 26284671502473710.1038/nchembio.1884)
Skinnider, M. A. et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat. Commun. 11, 6058 (2020). (PMID: 33247171769962810.1038/s41467-020-19986-1)
Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014). (PMID: 25036635412368410.1016/j.cell.2014.06.034)
Helfrich, E. J. N. et al. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat. Chem. Biol. 15, 813–821 (2019). (PMID: 31308532664269610.1038/s41589-019-0313-7)
Del Carratore, F. et al. Computational identification of co-evolving multi-gene modules in microbial biosynthetic gene clusters. Commun. Biol. 2, 83 (2019). (PMID: 30854475639573310.1038/s42003-019-0333-6)
Blin, K. et al. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019). (PMID: 31032519660243410.1093/nar/gkz310)
Séelem-Mojica, N., Aguilar, C., Gutiéerrez-García, K., Martínez-Guerrero, C. E. & Barona-Gómez, F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Microb. Genom. 5, e000260 (2019).
Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020). (PMID: 31612915)
Palaniappan, K. et al. IMG-ABC v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic Acids Res. 48, D422–D430 (2020). (PMID: 31665416)
Van Santen, J. A. et al. The Natural Products Atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019). (PMID: 31807684689185510.1021/acscentsci.9b00806)
Rutz, A. et al. The LOTUS Initiative for Open Natural Products Research: Knowledge Management through Wikidata. Preprint at bioRxiv https://doi.org/10.1101/2021.02.28.433265 (2021).
Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020). (PMID: 3176803310.1038/s41589-019-0400-9)
Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res. 49, D490–D497 (2021). (PMID: 3301017010.1093/nar/gkaa812)
Van Der Hooft, J. J. J. et al. Linking genomics and metabolomics to chart specialized metabolic diversity. Chem. Soc. Rev. 49, 3297–3314 (2020). (PMID: 3239394310.1039/D0CS00162G)
Kloosterman, A. M. et al. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lantibiotics. PLoS Biol. 18, e3001026 (2020). (PMID: 33351797779403310.1371/journal.pbio.3001026)
Jensen, P. R. Natural products and the gene cluster revolution. Trends Microbiol. 24, 968–977 (2016). (PMID: 27491886512393410.1016/j.tim.2016.07.006)
Ziemert, N., Alanjary, M. & Weber, T. The evolution of genome mining in microbes – a review. Nat. Prod. Rep. 33, 988–1005 (2016). (PMID: 2727220510.1039/C6NP00025H)
Zhang, M. M., Wang, Y., Ang, E. L. & Zhao, H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 33, 963–987 (2016). (PMID: 27072804496327710.1039/C6NP00017G)
Xu, F. et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat. Chem. Biol. 15, 161–168 (2019). (PMID: 30617293633957310.1038/s41589-018-0193-2)
Zhang, M. M. et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13, 607–609 (2017). (PMID: 10.1038/nchembio.2341)
Kenshole, E., Herisse, M., Michael, M. & Pidot, S. J. Natural product discovery through microbial genome mining. Curr. Opin. Chem. Biol. 60, 47–54 (2021). (PMID: 3285396810.1016/j.cbpa.2020.07.010)
Soldatou, S., Eldjarn, G. H., Huerta-Uribe, A., Rogers, S. & Duncan, K. R. Linking biosynthetic and chemical space to accelerate microbial secondary metabolite discovery. FEMS Microbiol. Lett. 366, fnz142 (2019). (PMID: 31252431669706710.1093/femsle/fnz142)
Ernst, M. et al. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9, 144 (2019). (PMID: 668050310.3390/metabo9070144)
Mohimani, H. et al. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 13, 30–37 (2017). (PMID: 2782080310.1038/nchembio.2219)
Duncan, K. R. et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem. Biol. 22, 460–471 (2015). (PMID: 25865308440993010.1016/j.chembiol.2015.03.010)
Mohimani, H. et al. NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide discovery. J. Nat. Prod. 77, 1902–1909 (2014). (PMID: 25116163414317610.1021/np500370c)
Behsaz, B. et al. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nat. Commun. 12, 3225 (2021). (PMID: 34050176816388210.1038/s41467-021-23502-4)
Rittenberg, D. & Bloch, K. The utilization of acetic acid for the synthesis of fatty acids. J. Biol. Chem. 160, 417–424 (1945). (PMID: 2100454910.1016/S0021-9258(18)51050-4)
Bloch, K. & Rittenberg, D. On the utilization of acetic acid for cholesterol formation. J. Biol. Chem. 145, 625–636 (1942). (PMID: 10.1016/S0021-9258(18)51303-X)
Kaneda, T., Butte, J. C., Taubman, S. B. & Corcoran, J. W. Actinomycete antibiotics. III. The biogenesis of erythronolide, the C-21 branched chain lactone in erythromycin. J. Biol. Chem. 237, 322–328 (1962). (PMID: 1445357910.1016/S0021-9258(18)93922-0)
Chokkathukalam, A., Kim, D.-H., Barrett, M. P., Breitling, R. & Creek, D. J. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis 6, 511–524 (2014). (PMID: 2456835410.4155/bio.13.348)
Huang, X. et al. X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal. Chem. 86, 1632–1639 (2014). (PMID: 24397582398296410.1021/ac403384n)
Chokkathukalam, A. et al. MzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29, 281–283 (2013). (PMID: 2316205410.1093/bioinformatics/bts674)
Tang, J. K. H., You, L., Blankenship, R. E. & Tang, Y. J. Recent advances in mapping environmental microbial metabolisms through 13C isotopic fingerprints. J. R. Soc. Interface 9, 2767–2780 (2012). (PMID: 22896564347992510.1098/rsif.2012.0396)
Khosla, C., Tang, Y., Chen, A. Y., Schnarr, N. A. & Cane, D. E. Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu. Rev. Biochem. 76, 195–221 (2007). (PMID: 1732867310.1146/annurev.biochem.76.053105.093515)
Zhang, H., Wang, Y., Wu, J., Skalina, K. & Pfeifer, B. A. Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host. Chem. Biol. 17, 1232–1240 (2010). (PMID: 2109557310.1016/j.chembiol.2010.09.013)
Chevrette, M. G., Aicheler, F., Kohlbacher, O., Currie, C. R. & Medema, M. H. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics 33, 3202–3210 (2017). (PMID: 28633438586003410.1093/bioinformatics/btx400)
Röttig, M. et al. NRPSpredictor2 – a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362–W367 (2011). (PMID: 21558170312575610.1093/nar/gkr323)
Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017). (PMID: 28244986539128910.1038/nchembio.2319)
Robbel, L., Knappe, T. A., Linne, U., Xie, X. & Marahiel, M. A. Erythrochelin – a hydroxamate-type siderophore predicted from the genome of Saccharopolyspora erythraea. FEBS J. 277, 663–676 (2009). (PMID: 2005092010.1111/j.1742-4658.2009.07512.x)
Schulze, C. J. et al. Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem. Biol. 10, 2373–2381 (2015). (PMID: 26270237750508510.1021/acschembio.5b00308)
Barona-Gómez, F., Wong, U., Giannakopulos, A. E., Derrick, P. J. & Challis, G. L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J. Am. Chem. Soc. 126, 16282–16283 (2004). (PMID: 1560030410.1021/ja045774k)
Lee, H.-S. et al. Cyclic peptides of the nocardamine class from a marine-derived bacterium of the genus Streptomyces. J. Nat. Prod. 68, 623–625 (2005). (PMID: 1584496610.1021/np040220g)
Schulze, C. J. et al. ‘Function-first’ lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem. Biol. 20, 285–295 (2013). (PMID: 23438757358441910.1016/j.chembiol.2012.12.007)
Hoshino, S. et al. Mycolic acid containing bacterium stimulates tandem cyclization of polyene macrolactam in a lake sediment derived rare actinomycete. Org. Lett. 19, 4992–4995 (2017). (PMID: 2888009110.1021/acs.orglett.7b02508)
Hoshino, S. et al. Mirilactams C-E, novel polycyclic macrolactams isolated from combined-culture of Actinosynnema mirum NBRC 14064 and mycolic acid-containing bacterium. Chem. Pharm. Bull. 66, 660–667 (2018). (PMID: 10.1248/cpb.c18-00143)
Mosey, R. A. & Floreancig, P. E. Isolation, biological activity, synthesis, and medicinal chemistry of the pederin/mycalamide family of natural products. Nat. Prod. Rep. 29, 980–995 (2012). (PMID: 2277247710.1039/c2np20052j)
Karas, J. A. et al. Structure–activity relationships of daptomycin lipopeptides. J. Med. Chem. 63, 13266–13290 (2020). (PMID: 3268735210.1021/acs.jmedchem.0c00780)
Duetz, W. A. et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66, 2641–2646 (2000). (PMID: 1083145011059310.1128/AEM.66.6.2641-2646.2000)
معلومات مُعتمدة: U41 AT008718 United States AT NCCIH NIH HHS
المشرفين على المادة: 0 (Biological Products)
تواريخ الأحداث: Date Created: 20211231 Date Completed: 20220419 Latest Revision: 20230211
رمز التحديث: 20230212
مُعرف محوري في PubMed: PMC8891042
DOI: 10.1038/s41589-021-00949-6
PMID: 34969972
قاعدة البيانات: MEDLINE