دورية أكاديمية

Aryl hydrocarbon receptor (AhR) activation contributes to high-fat diet-induced vascular dysfunction.

التفاصيل البيبلوغرافية
العنوان: Aryl hydrocarbon receptor (AhR) activation contributes to high-fat diet-induced vascular dysfunction.
المؤلفون: da Silva JF; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Bolsoni JA; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., da Costa RM; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.; Academic Unit on Health Sciences, Jataí Federal University, Jataí, Brazil., Alves JV; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Bressan AFM; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Silva LEV; Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Costa TJ; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Oliveira AER; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.; Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil., Manzato CP; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Aguiar CA; Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Fazan R Jr; Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Cunha FQ; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Nakaya HI; Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.; Israelita Albert Einstein Hospital, São Paulo, Brazil., Carneiro FS; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil., Tostes RC; Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil.
المصدر: British journal of pharmacology [Br J Pharmacol] 2022 Jun; Vol. 179 (12), pp. 2938-2952. Date of Electronic Publication: 2022 Feb 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مواضيع طبية MeSH: Diet, High-Fat*/adverse effects , Receptors, Aryl Hydrocarbon*/genetics , Receptors, Aryl Hydrocarbon*/metabolism, Animals ; Endothelial Cells/metabolism ; Endothelium, Vascular ; Male ; Mice ; Mice, Inbred C57BL ; Obesity/metabolism ; Vasodilation/physiology
مستخلص: Background and Purpose: Metabolic and vascular dysfunction are common features of obesity. Aryl hydrocarbon receptor (AhR) regulates lipid metabolism and vascular homeostasis, but whether vascular AhR are activated in obesity or have a protective and/or harmful effects on vascular function in obesity are unknown. Our study addresses whether AhR activation contributes to obesity-associated vascular dysfunction and the mechanisms involved in these AhR effects.
Experimental Approach: Male AhR KO (Ahr -/- ) and WT mice were fed either control or a HF (high-fat) diet for 10 weeks. Metabolic and inflammatory parameters were measured in serum and adipose tissue. Vascular reactivity (isometric force) was evaluated using a myography. Endothelial NOS (eNOS) and AhR protein expression was determined by western blot, Cyp1A1 and Nos3 gene expression by RT-PCR and.NO production was quantified by DAF fluorescence.
Key Results: HF diet increased total serum HDL and LDL, as well as vascular AhR protein expression and proinflammatory cytokines in the adipose tissue. HF diet decreased endothelium-dependent vasodilation. AhR deletion protected mice from HF diet-induced dyslipidaemia, weight gain and inflammatory processes. HF diet-induced endothelial dysfunction was attenuated in Ahr -/- mice. Vessels from Ahr -/- mice exhibited a greater NO reserve. In cultured endothelial cells, lysophosphatidylcholine (LPC) a major component of LDL and oxidized LDL [oxLDL]) reduced Nos3 gene expression and NO production. Antagonism of the AhR inhibited LPC effects on endothelial cells and induced decreased endothelium-dependent vasodilation.
Conclusion and Implications: AhR deletion attenuates HF diet-induced dyslipidaemia and vascular dysfunction by improving eNOS/NO signalling. Targeting AhRs may prevent obesity-associated vascular dysfunction.
(© 2022 The British Pharmacological Society.)
References: Al Suwaidi, J., Higano, S. T., Holmes, D. R. Jr., Lennon, R., & Lerman, A. (2001). Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. Journal of the American College of Cardiology, 37(6), 1523-1528. https://doi.org/10.1016/s0735-1097(01)01212-8.
Alexander, S. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., Davies, J. A., Ahlers-Dannen, K. E., … Zolghadri, Y. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 178(S1), S1-S26. https://doi.org/10.1111/bph.15537.
Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al-hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. British Journal of Pharmacology, 178(S1), S27-S156. https://doi.org/10.1111/bph.15538.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175(3), 407-411. https://doi.org/10.1111/bph.14112.
Bhaskaran, K., Dos-Santos-Silva, I., Leon, D. A., Douglas, I. J., & Smeeth, L. (2018). Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3.6 million adults in the UK. The Lancet Diabetes and Endocrinology, 6(12), 944-953. https://doi.org/10.1016/S2213-8587(18)30288-2.
Bonetti, P. O., Lerman, L. O., & Lerman, A. (2003). Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(2), 168-175. https://doi.org/10.1161/01.atv.0000051384.43104.fc.
Buettner, R., Scholmerich, J., & Bollheimer, L. C. (2007). High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring), 15(4), 798-808. https://doi.org/10.1038/oby.2007.608.
Cercato, C., & Fonseca, F. A. (2019). Cardiovascular risk and obesity. Diabetology and Metabolic Syndrome, 11, 74-89. https://doi.org/10.1186/s13098-019-0468-0.
Chaudhuri, P., Rosenbaum, M. A., Sinharoy, P., Damron, D. S., Birnbaumer, L., & Graham, L. M. (2016). Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2110-2115. https://doi.org/10.1073/pnas.1600371113.
Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., & Ma'ayan, A. (2013). Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128-142. https://doi.org/10.1186/1471-2105-14-128.
Cicalese, S. M., da Silva, J. F., Priviero, F., Webb, R. C., Eguchi, S., & Tostes, R. C. (2021). Vascular stress signaling in hypertension. Circulation Research, 128(7), 969-992. https://doi.org/10.1161/CIRCRESAHA.121.318053.
Clarkson, P., Celermajer, D. S., Powe, A. J., Donald, A. E., Henry, R. M., & Deanfield, J. E. (1997). Endothelium-dependent dilatation is impaired in young healthy subjects with a family history of premature coronary disease. Circulation, 96(10), 3378-3383. https://doi.org/10.1161/01.cir.96.10.3378.
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987-993. https://doi.org/10.1111/bph.14153.
da Costa, R. M., da Silva, J. F., Alves, J. V., Dias, T. B., Rassi, D. M., Garcia, L. V., Lobato, N. D., & Tostes, R. C. (2018). Increased O-GlcNAcylation of endothelial nitric oxide synthase compromises the anti-contractile properties of perivascular adipose tissue in metabolic syndrome. Frontiers in Physiology, 9, 341-357. https://doi.org/10.3389/fphys.2018.00341.
Davis, S., & Meltzer, P. S. (2007). GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846-1847. https://doi.org/10.1093/bioinformatics/btm254.
Denison, M. S., & Nagy, S. R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual Review of Pharmacology and Toxicology, 43, 309-334. https://doi.org/10.1146/annurev.pharmtox.43.100901.135828.
Ford, M. A., McConnell, J. P., Lavi, S., Rihal, C. S., Prasad, A., Sandhu, G. S., Hartman, S. J., Lerman, L. O., & Lerman, A. (2009). Coronary artery endothelial dysfunction is positively correlated with low density lipoprotein and inversely correlated with high density lipoprotein subclass particles measured by nuclear magnetic resonance spectroscopy. Atherosclerosis, 207(1), 111-115. https://doi.org/10.1016/j.atherosclerosis.2009.04.039.
Han, Z., Miwa, Y., Obikane, H., Mitsumata, M., Takahashi-Yanaga, F., Morimoto, S., & Sasaguri, T. (2008). Aryl hydrocarbon receptor mediates laminar fluid shear stress-induced CYP1A1 activation and cell cycle arrest in vascular endothelial cells. Cardiovascular Research, 77(4), 809-818. https://doi.org/10.1093/cvr/cvm095.
Hu, D., Mohanta, S. K., Yin, C., Peng, L., Ma, Z., Srikakulapu, P., Grassia, G., MacRitchie, N., Dever, G., Gordon, P., Burton, F. L., Ialenti, A., Sabir, S. R., McInnes, I. B., Brewer, J. M., Garside, P., Weber, C., Lehmann, T., Teupser, D., … Habenicht, A. J. (2015). Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity, 42(6), 1100-1115. https://doi.org/10.1016/j.immuni.2015.05.015.
Huang, S., Shui, X., He, Y., Xue, Y., Li, J., Li, G., Lei, W., & Chen, C. (2015). AhR expression and polymorphisms are associated with risk of coronary arterial disease in Chinese population. Scientific Reports, 5, 8022-8029. https://doi.org/10.1038/srep08022.
Ichihara, S., Yamada, Y., Ichihara, G., Nakajima, T., Li, P., Kondo, T., Gonzalez, F. J., & Murohara, T. (2007). A role for the aryl hydrocarbon receptor in regulation of ischemia-induced angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(6), 1297-1304. https://doi.org/10.1161/ATVBAHA.106.138701.
Kerkvliet, N. I., Steppan, L. B., Vorachek, W., Oda, S., Farrer, D., Wong, C. P., Pham, D., & Mourich, D. V. (2009). Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes. Immunotherapy, 1(4), 539-547. https://doi.org/10.2217/imt.09.24.
Kerley-Hamilton, J. S., Trask, H. W., Ridley, C. J., Dufour, E., Ringelberg, C. S., Nurinova, N., Wong, D., Moodie, K. L., Shipman, S. L., Moore, J. H., Korc, M., Shworak, N. W., & Tomlinson, C. R. (2012). Obesity is mediated by differential aryl hydrocarbon receptor signaling in mice fed a Western diet. Environmental Health Perspectives, 120(9), 1252-1259. https://doi.org/10.1289/ehp.1205003.
Kim, J. B., Pjanic, M., Nguyen, T., Miller, C. L., Iyer, D., Liu, B., Wang, T., Sazonova, O., Carcamo-Orive, I., Matic, L. P., Maegdefessel, L., Hedin, U., & Quertermous, T. (2017). TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells. PLoS Genetics, 13(5), e1006750. https://doi.org/10.1371/journal.pgen.1006750.
Kim, J. B., Zhao, Q., Nguyen, T., Pjanic, M., Cheng, P., Wirka, R., Travisano, S., Nagao, M., Kundu, R., & Quertermous, T. (2020). Environment-sensing aryl hydrocarbon receptor inhibits the chondrogenic fate of modulated smooth muscle cells in atherosclerotic lesions. Circulation, 142(6), 575-590. https://doi.org/10.1161/CIRCULATIONAHA.120.045981.
Kopf, P. G., Huwe, J. K., & Walker, M. K. (2008). Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovascular Toxicology, 8(4), 181-193. https://doi.org/10.1007/s12012-008-9027-x.
Kume, N., Cybulsky, M. I., & Gimbrone, M. A. Jr. (1992). Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. The Journal of Clinical Investigation, 90(3), 1138-1144. https://doi.org/10.1172/JCI115932.
Kwapiszewska, G., Johansen, A. K. Z., Gomez-Arroyo, J., & Voelkel, N. F. (2019). Role of the aryl hydrocarbon receptor/ARNT/cytochrome P450 system in pulmonary vascular diseases. Circulation Research, 125(3), 356-366. https://doi.org/10.1161/CIRCRESAHA.119.315054.
Lang, P., Hasselwander, S., Li, H., & Xia, N. (2019). Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Scientific Reports, 9(1), 19556-19570. https://doi.org/10.1038/s41598-019-55987-x.
Larigot, L., Juricek, L., Dairou, J., & Coumoul, X. (2018). AhR signaling pathways and regulatory functions. Biochimie Open, 7, 1-9. https://doi.org/10.1016/j.biopen.2018.05.001.
Lavi, S., Prasad, A., Yang, E. H., Mathew, V., Simari, R. D., Rihal, C. S., Lerman, L. O., & Lerman, A. (2007). Smoking is associated with epicardial coronary endothelial dysfunction and elevated white blood cell count in patients with chest pain and early coronary artery disease. Circulation, 115(20), 2621-2627. https://doi.org/10.1161/CIRCULATIONAHA.106.641654.
Lawrence, B. P., Denison, M. S., Novak, H., Vorderstrasse, B. A., Harrer, N., Neruda, W., Reichel, C., & Woisetschlager, M. (2008). Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound. Blood, 112(4), 1158-1165. https://doi.org/10.1182/blood-2007-08-109645.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178.
Lima, V. V., Giachini, F. R., Carneiro, F. S., Carneiro, Z. N., Saleh, M. A., Pollock, D. M., Fortes, Z. B., Carvalho, M. H., Ergul, A., Webb, R. C., & Tostes, R. C. (2010). O-GlcNAcylation contributes to augmented vascular reactivity induced by endothelin 1. Hypertension, 55(1), 180-188. https://doi.org/10.1161/HYPERTENSIONAHA.109.143818.
Lund, A. K., Agbor, L. N., Zhang, N., Baker, A., Zhao, H., Fink, G. D., Kanagy, N. L., & Walker, M. K. (2008). Loss of the aryl hydrocarbon receptor induces hypoxemia, endothelin-1, and systemic hypertension at modest altitude. Hypertension, 51(3), 803-809. https://doi.org/10.1161/HYPERTENSIONAHA.107.100586.
Lund, A. K., Goens, M. B., Kanagy, N. L., & Walker, M. K. (2003). Cardiac hypertrophy in aryl hydrocarbon receptor null mice is correlated with elevated angiotensin II, endothelin-1, and mean arterial blood pressure. Toxicology and Applied Pharmacology, 193(2), 177-187. https://doi.org/10.1016/j.taap.2003.08.008.
Lundman, P., Eriksson, M. J., Stuhlinger, M., Cooke, J. P., Hamsten, A., & Tornvall, P. (2001). Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. Journal of the American College of Cardiology, 38(1), 111-116. https://doi.org/10.1016/s0735-1097(01)01318-3.
Mao, Y., Luo, W., Zhang, L., Wu, W., Yuan, L., Xu, H., Song, J., Fujiwara, K., Abe, J.-i., LeMaire, S. A., Wang, X. L., & Shen, Y. H. (2017). STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(5), 920-929. https://doi.org/10.1161/ATVBAHA.117.309017.
Mascanfroni, I. D., Takenaka, M. C., Yeste, A., Patel, B., Wu, Y., Kenison, J. E., Siddiqui, S., Basso, A. S., Otterbein, L. E., Pardoll, D. M., Pan, F., Priel, A., Clish, C. B., Robson, S. C., & Quintana, F. J. (2015). Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nature Medicine, 21(6), 638-646. https://doi.org/10.1038/nm.3868.
McMillan, B. J., & Bradfield, C. A. (2007). The aryl hydrocarbon receptor is activated by modified low-density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1412-1417. https://doi.org/10.1073/pnas.0607296104.
Metidji, A., Omenetti, S., Crotta, S., Li, Y., Nye, E., Ross, E., Li, V., Maradana, M. R., Schiering, C., & Stockinger, B. (2018). The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity, 49(2), 353-362 e355. https://doi.org/10.1016/j.immuni.2018.07.010.
Mohammadi-Bardbori, A., Omidi, M., & Arabnezhad, M. R. (2019). Impact of CH223191-induced mitochondrial dysfunction on its aryl hydrocarbon receptor agonistic and antagonistic activities. Chemical Research in Toxicology, 32(4), 691-697. https://doi.org/10.1021/acs.chemrestox.8b00371.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Pinheiro-Castro, N., Silva, L., Novaes, G. M., & Ong, T. P. (2019). Hypercaloric diet-induced obesity and obesity-related metabolic disorders in experimental models. Advances in Experimental Medicine and Biology, 1134, 149-161. https://doi.org/10.1007/978-3-030-12668-1_8.
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007.
Rothhammer, V., & Quintana, F. J. (2019). The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nature Reviews. Immunology, 19(3), 184-197. https://doi.org/10.1038/s41577-019-0125-8.
Savoia, C., Burger, D., Nishigaki, N., Montezano, A., & Touyz, R. M. (2011). Angiotensin II and the vascular phenotype in hypertension. Expert Reviews in Molecular Medicine, 13, e11. https://doi.org/10.1017/S1462399411001815.
Seravalle, G., & Grassi, G. (2017). Obesity and hypertension. Pharmacological Research, 122, 1-7. https://doi.org/10.1016/j.phrs.2017.05.013.
Silva, J. F., Correa, I. C., Diniz, T. F., Lima, P. M., Santos, R. L., Cortes, S. F., Coimbra, C., & Lemos, V. S. (2016). Obesity, inflammation, and exercise training: Relative contribution of iNOS and eNOS in the modulation of vascular function in the mouse aorta. Frontiers in Physiology, 7, 386-399. https://doi.org/10.3389/fphys.2016.00386.
Silva, L. E. V., Geraldini, V. R., de Oliveira, B. P., Silva, C. A. A., Porta, A., & Fazan, R. (2017). Comparison between spectral analysis and symbolic dynamics for heart rate variability analysis in the rat. Scientific Reports, 7(1), 8428-8436. https://doi.org/10.1038/s41598-017-08888-w.
Stapleton, P. A., James, M. E., Goodwill, A. G., & Frisbee, J. C. (2008). Obesity and vascular dysfunction. Pathophysiology, 15(2), 79-89. https://doi.org/10.1016/j.pathophys.2008.04.007.
Stefan, N. (2020). Causes, consequences, and treatment of metabolically unhealthy fat distribution. The Lancet Diabetes and Endocrinology, 8(7), 616-627. https://doi.org/10.1016/S2213-8587(20)30110-8.
Talbot, J., Peres, R. S., Pinto, L. G., Oliveira, R. D. R., Lima, K. A., Donate, P. B., Silva, J. R., Ryffel, B., Cunha, T. M., Alves-Filho, J. C., Liew, F. Y., Louzada-Junio, P., & de Queiroz Cunha, F. (2018). Smoking-induced aggravation of experimental arthritis is dependent of aryl hydrocarbon receptor activation in Th17 cells. Arthritis Research & Therapy, 20(1), 119-130. https://doi.org/10.1186/s13075-018-1609-9.
Vasquez, A., Atallah-Yunes, N., Smith, F. C., You, X., Chase, S. E., Silverstone, A. E., & Vikstrom, K. L. (2003). A role for the aryl hydrocarbon receptor in cardiac physiology and function as demonstrated by AhR knockout mice. Cardiovascular Toxicology, 3(2), 153-163. https://doi.org/10.1385/ct:3:2:153.
Villalobos-Molina, R., Vazquez-Cuevas, F. G., Lopez-Guerrero, J. J., Figueroa-Garcia, M. C., Gallardo-Ortiz, I. A., Ibarra, M., Rodríguez-Sosa, M., Gonzalez, F. J., & Elizondo, G. (2008). Vascular α1D-adrenoceptors are overexpressed in aorta of the aryl hydrocarbon receptor null mouse: Role of increased angiotensin II. Autonomic & Autacoid Pharmacology, 28(2-3), 61-67. https://doi.org/10.1111/j.1474-8673.2008.00418.x.
Wang, C. Y., & Liao, J. K. (2012). A mouse model of diet-induced obesity and insulin resistance. Methods in Molecular Biology, 821, 421-433. https://doi.org/10.1007/978-1-61779-430-8_27.
Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L., & Brown, M. (2011). Health and economic burden of the projected obesity trends in the USA and the UK. Lancet, 378(9793), 815-825. https://doi.org/10.1016/S0140-6736(11)60814-3.
Wenceslau, C. F., McCarthy, C. G., Earley, S., England, S. K., Filosa, J. A., Goulopoulou, S., Gutterman, D. D., Isakson, B. E., Kanagy, N. L., Martinez-Lemus, L. A., Sonkusare, S. K., Thakore, P., Trask, A. J., Watts, S. W., & Webb, R. C. (2021). Guidelines for the measurement of vascular function and structure in isolated arteries and veins. American Journal of Physiology. Heart and Circulatory Physiology, 321(1), H77-H111. https://doi.org/10.1152/ajpheart.01021.2020.
WHO. (2021). Fact sheet-Obesity and overweight in the world. Available from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed November 30th 2021).
Widmer, R. J., & Lerman, A. (2014). Endothelial dysfunction and cardiovascular disease. Global Cardiology Science & Practice, 2014(3), 291-308. https://doi.org/10.5339/gcsp.2014.43.
Wu, D., Nishimura, N., Kuo, V., Fiehn, O., Shahbaz, S., Van Winkle, L., Matsumura, F., & Vogel, C. F. (2011). Activation of aryl hydrocarbon receptor induces vascular inflammation and promotes atherosclerosis in apolipoprotein E−/− mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1260-1267. https://doi.org/10.1161/ATVBAHA.110.220202.
Zakiev, E. R., Sukhorukov, V. N., Melnichenko, A. A., Sobenin, I. A., Ivanova, E. A., & Orekhov, A. N. (2016). Lipid composition of circulating multiple-modified low density lipoprotein. Lipids in Health and Disease, 15(1), 134-140. https://doi.org/10.1186/s12944-016-0308-2.
Zhang, N. (2011). The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology. Journal of Cardiovascular Disease Research, 2(2), 91-95. https://doi.org/10.4103/0975-3583.83033.
Zhang, N., Agbor, L. N., Scott, J. A., Zalobowski, T., Elased, K. M., Trujillo, A., Duke, M. S., Wolf, V., Walsh, M. T., Born, J. L., Felton, L. A., Wang, J., Wang, W., Kanagy, N. L., & Walker, M. K. (2010). An activated renin-angiotensin system maintains normal blood pressure in aryl hydrocarbon receptor heterozygous mice but not in null mice. Biochemical Pharmacology, 80(2), 197-204. https://doi.org/10.1016/j.bcp.2010.03.023.
فهرسة مساهمة: Keywords: AhR; Aryl hydrocarbon receptors; cardiovascular diseasedyslipidaemiaendotheliumNOobesity
المشرفين على المادة: 0 (Receptors, Aryl Hydrocarbon)
تواريخ الأحداث: Date Created: 20220103 Date Completed: 20220517 Latest Revision: 20220531
رمز التحديث: 20221213
DOI: 10.1111/bph.15789
PMID: 34978070
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5381
DOI:10.1111/bph.15789