دورية أكاديمية

Solvent-free bottom-up patterning of zeolitic imidazolate frameworks.

التفاصيل البيبلوغرافية
العنوان: Solvent-free bottom-up patterning of zeolitic imidazolate frameworks.
المؤلفون: Miao Y; Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA., Lee DT; Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA., de Mello MD; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.; Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, USA., Ahmad M; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.; Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA., Abdel-Rahman MK; Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA., Eckhert PM; Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA., Boscoboinik JA; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.; Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA., Fairbrother DH; Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA., Tsapatsis M; Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA. tsapatsis@jhu.edu.; Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA. tsapatsis@jhu.edu.
المصدر: Nature communications [Nat Commun] 2022 Jan 20; Vol. 13 (1), pp. 420. Date of Electronic Publication: 2022 Jan 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مستخلص: Patterning metal-organic frameworks (MOFs) at submicrometer scale is a crucial yet challenging task for their integration in miniaturized devices. Here we report an electron beam (e-beam) assisted, bottom-up approach for patterning of two MOFs, zeolitic imidazolate frameworks (ZIF), ZIF-8 and ZIF-67. A mild pretreatment of metal oxide precursors with linker vapor leads to the sensitization of the oxide surface to e-beam irradiation, effectively inhibiting subsequent conversion of the oxide to ZIFs in irradiated areas, while ZIF growth in non-irradiated areas is not affected. Well-resolved patterns with features down to the scale of 100 nm can be achieved. This developer-free, all-vapor phase technique will facilitate the incorporation of MOFs in micro- and nanofabrication processes.
(© 2022. The Author(s).)
References: Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013). (PMID: 2399056410.1126/science.1230444)
Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004). (PMID: 10.1002/anie.200300610)
Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008). (PMID: 1819734010.1039/B618320B)
Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018). (PMID: 3019040110.1126/science.aat4123)
Kwon, H. T. & Jeong, H. K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135, 10763–10768 (2013). (PMID: 2375857810.1021/ja403849c)
Brown, A. J. et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345, 72–75 (2014). (PMID: 2499464910.1126/science.1251181)
Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017). (PMID: 2905137610.1126/science.aal2456)
He, G., Dakhchoune, M., Zhao, J., Huang, S. & Agrawal, K. V. Electrophoretic nuclei assembly for crystallization of high-performance membranes on unmodified supports. Adv. Funct. Mater. 28, 1–8 (2018).
Wei, R. et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation. Adv. Funct. Mater. 30, 1–7 (2020).
Wei, Y. S., Zhang, M., Zou, R. & Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 120, 12089–12174 (2020). (PMID: 3235665710.1021/acs.chemrev.9b00757)
Wu, M. X. & Yang, Y. W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1–20 (2017). (PMID: 10.1002/adma.201606134)
Lu, X. F., Fang, Y., Luan, D. & Lou, X. W. D. Metal–organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett. 21, 1555–1565 (2021). (PMID: 3356781910.1021/acs.nanolett.0c04898)
Feng, L., Wang, K. Y., Powell, J. & Zhou, H. C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 1, 801–824 (2019). (PMID: 10.1016/j.matt.2019.08.022)
Falcaro, P. et al. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014). (PMID: 2480263410.1039/C4CS00089G)
Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014). (PMID: 2481142510.1039/C4CS00106K)
Wang, H., Wang, Z., Huang, L., Mitra, A. & Yan, Y. Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir 17, 2572–2574 (2001). (PMID: 2542005710.1021/la0102509)
Naydenova, I. et al. Hybrid sensors fabricated by inkjet printing and holographic patterning. Chem. Mater. 27, 6097–6101 (2015). (PMID: 10.1021/acs.chemmater.5b02629)
Hermes, S., Schröder, F., Chelmowski, R., Wöll, C. & Fischer, R. A. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005). (PMID: 1620176710.1021/ja053523l)
Huang, L. et al. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. J. Am. Chem. Soc. 122, 3530–3531 (2000). (PMID: 10.1021/ja994240u)
Yoo, Y. & Jeong, H.-K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. 2441, https://doi.org/10.1039/b800061a (2008).
Krishtab, M. et al. Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nat. Commun. 10, 1–9 (2019). (PMID: 10.1038/s41467-019-11703-x)
Usman, M., Mendiratta, S. & Lu, K. L. Semiconductor metal–organic frameworks: future low-bandgap materials. Adv. Mater. 29, 1–5 (2017). (PMID: 10.1002/adma.201605071)
Stassen, I. et al. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017). (PMID: 2845238810.1039/C7CS00122C)
Stavila, V., Talin, A. A. & Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014). (PMID: 2480276310.1039/C4CS00096J)
Tu, M. et al. Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nat. Mater. 20, 93–99 (2021). (PMID: 3310664810.1038/s41563-020-00827-x)
Conrad, S. et al. Controlling dissolution and transformation of zeolitic imidazolate frameworks by using electron-beam-induced amorphization. Angew. Chem. Int. Ed. 57, 13592–13597 (2018). (PMID: 10.1002/anie.201809921)
Miao, Y. & Tsapatsis, M. Electron beam patterning of metal-organic frameworks. Chem. Mater. 33, 754–760 (2021). (PMID: 10.1021/acs.chemmater.0c04204)
Ghosh, S. et al. Two distinct stages of structural modification of ZIF-L MOF under electron-beam irradiation. Chem. Mater. 33, 5681–5689 (2021). (PMID: 10.1021/acs.chemmater.1c01332)
Dimitrakakis, C. et al. Top-down patterning of zeolitic imidazolate framework composite thin films by deep X-ray lithography. Chem. Commun. 48, 7483–7485 (2012). (PMID: 10.1039/c2cc33292b)
Keitz, B. K., Yu, C. J., Long, J. R. & Ameloot, R. Lithographic deposition of patterned metal-organic framework coatings using a photobase generator. Angew. Chem. Int. Ed. 53, 5561–5565 (2014). (PMID: 10.1002/anie.201400580)
Hirai, K. & Sada, K. Infrared laser writing of MOFs. Chem. Commun. 53, 5275–5278 (2017). (PMID: 10.1039/C7CC00702G)
Wise, R. S. Breaking stochastic tradeoffs with a dry deposited and dry developed EUV photoresist system. In Advances in Patterning Materials and Processes XXXVIII (eds. Guerrero, D. & Sanders, D. P.) Vol. 1161203 1 (SPIE, 2021).
Stassen, I. et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 15, 304–310 (2016). (PMID: 2665732810.1038/nmat4509)
Ruiz-Zambrana, C. L., Malankowska, M. & Coronas, J. Metal organic framework top-down and bottom-up patterning techniques. Dalt. Trans. 49, 15139–15148 (2020). (PMID: 10.1039/D0DT02207A)
Li, S. et al. Unconventional nucleation and oriented growth of ZIF-8 crystals on non-polar surface. Adv. Mater. 24, 5954–5958 (2012). (PMID: 2293652110.1002/adma.201201996)
Zhuang, J., Friedel, J. & Terfort, A. The oriented and patterned growth of fluorescent metal-organic frameworks onto functionalized surfaces. Beilstein J. Nanotechnol. 3, 570–578 (2012). (PMID: 23019553345860310.3762/bjnano.3.66)
Ameloot, R. et al. Metal-organic framework single crystals as photoactive matrices for the generation of metallic microstructures. Adv. Mater. 23, 1788–1791 (2011). (PMID: 2149151110.1002/adma.201100063)
Armon, N. et al. Simultaneous laser-induced synthesis and micro-patterning of a metal organic framework. Chem. Commun. 55, 12773–12776 (2019). (PMID: 10.1039/C9CC05990C)
Lu, G., Farha, O. K., Zhang, W., Huo, F. & Hupp, J. T. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv. Mater. 24, 3970–3974 (2012). (PMID: 2271848210.1002/adma.201202116)
Carbonell, C., Imaz, I. & Maspoch, D. Single-crystal metal-organic framework arrays. J. Am. Chem. Soc. 133, 2144–2147 (2011). (PMID: 2128057910.1021/ja2002428)
Cruz, A. J. et al. Integrated cleanroom process for the vapor-phase deposition of large-area zeolitic imidazolate framework thin films. Chem. Mater. 31, 9462–9471 (2019). (PMID: 10.1021/acs.chemmater.9b03435)
Lee, W. J. Inhibiting effects of imidazole on copper corrosion in 1 M HNO3 solution. Mater. Sci. Eng. A 348, 217–226 (2003). (PMID: 10.1016/S0921-5093(02)00734-7)
Dutta, A., Saha, S. K., Adhikari, U., Banerjee, P. & Sukul, D. Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: a combined experimental and theoretical approach. Corros. Sci. 123, 256–266 (2017). (PMID: 10.1016/j.corsci.2017.04.017)
Finšgar, M. 2-Mercaptobenzimidazole as a copper corrosion inhibitor: Part II. Surface analysis using X-ray photoelectron spectroscopy. Corros. Sci. 72, 90–98 (2013). (PMID: 10.1016/j.corsci.2013.03.010)
Higuchi, T. et al. One-step nanopatterning of conjugated polymers by electron-beam-assisted electropolymerization. Microscopy 64, 205–212 (2015). (PMID: 25825510471129210.1093/jmicro/dfv013)
Wang, H. L., O’Malley, R. M. & Fernandez, J. E. Electrochemical and chemical polymerization of imidazole and some of its derivatives. Macromolecules 27, 893–901 (1994). (PMID: 10.1021/ma00082a003)
Gangnaik, A. S., Georgiev, Y. M. & Holmes, J. D. New generation electron beam resists: a review. Chem. Mater. 29, 1898–1917 (2017). (PMID: 10.1021/acs.chemmater.6b03483)
Liu, S., Xiang, Z., Hu, Z., Zheng, X. & Cao, D. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. J. Mater. Chem. 21, 6649–6653 (2011). (PMID: 10.1039/c1jm10166h)
Kiciński, W. & Dyjak, S. Nitrogen-doped carbons derived from imidazole-based cross-linked porous organic polymers. Molecules 26, 668 (2021).
Dalstein, O. et al. Nanoimprinted, submicrometric, MOF-based 2D photonic structures: toward easy selective vapors sensing by a smartphone camera. Adv. Funct. Mater. 26, 81–90 (2016). (PMID: 10.1002/adfm.201503016)
Dalstein, O. et al. Evaporation-directed crack-patterning of metal–organic framework colloidal films and their application as photonic sensors. Angew. Chem. Int. Ed. 56, 14011–14015 (2017). (PMID: 10.1002/anie.201706745)
معلومات مُعتمدة: DE-SC0021212 U.S. Department of Energy (DOE); DE-SC0021304 U.S. Department of Energy (DOE); DE-SC0012704 U.S. Department of Energy (DOE)
تواريخ الأحداث: Date Created: 20220121 Latest Revision: 20221023
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8776825
DOI: 10.1038/s41467-022-28050-z
PMID: 35058452
قاعدة البيانات: MEDLINE