دورية أكاديمية

Broad phylogenetic and functional diversity among mixotrophic consumers of Prochlorococcus.

التفاصيل البيبلوغرافية
العنوان: Broad phylogenetic and functional diversity among mixotrophic consumers of Prochlorococcus.
المؤلفون: Li Q; School of Oceanography, Shanghai Jiao Tong University, Shanghai, China.; Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA.; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA., Edwards KF; Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA., Schvarcz CR; Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA.; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA., Steward GF; Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA. grieg@hawaii.edu.; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, USA. grieg@hawaii.edu.
المصدر: The ISME journal [ISME J] 2022 Jun; Vol. 16 (6), pp. 1557-1569. Date of Electronic Publication: 2022 Feb 10.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101301086 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-7370 (Electronic) Linking ISSN: 17517362 NLM ISO Abbreviation: ISME J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: Haptophyta* , Prochlorococcus*/genetics, Bacteria ; Ecosystem ; Phylogeny ; Phytoplankton ; Seawater/microbiology
مستخلص: Small eukaryotic phytoplankton are major contributors to global primary production and marine biogeochemical cycles. Many taxa are thought to be mixotrophic, but quantitative studies of phagotrophy exist for very few. In addition, little is known about consumers of Prochlorococcus, the abundant cyanobacterium at the base of oligotrophic ocean food webs. Here we describe thirty-nine new phytoplankton isolates from the North Pacific Subtropical Gyre (Station ALOHA), all flagellates ~2-5 µm diameter, and we quantify their ability to graze Prochlorococcus. The mixotrophs are from diverse classes (dictyochophytes, haptophytes, chrysophytes, bolidophytes, a dinoflagellate, and a chlorarachniophyte), many from previously uncultured clades. Grazing ability varied substantially, with specific clearance rate (volume cleared per body volume) varying over ten-fold across isolates and six-fold across genera. Slower grazers tended to create more biovolume per prey biovolume consumed. Using qPCR we found that the haptophyte Chrysochromulina was most abundant among the isolated mixotrophs at Station ALOHA, with 76-250 cells mL -1 across depths in the upper euphotic zone (5-100 m). Our results show that within a single ecosystem the phototrophs that ingest bacteria come from many branches of the eukaryotic tree, and are functionally diverse, indicating a broad range of strategies along the spectrum from phototrophy to phagotrophy.
(© 2022. The Author(s).)
References: Rii YM, Karl DM, Church MJ. Temporal and vertical variability in picophytoplankton primary productivity in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser. 2016;562:1–18.
Taylor AG, Landry MR. Phytoplankton biomass and size structure across trophic gradients in the southern California Current and adjacent ocean ecosystems. Mar Ecol Prog Ser. 2018;592:1–17.
Bolaños, LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISMEJ. 2020; 14:1663–74.
Duhamel S, Kim E, Sprung B, Anderson OR. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol Oceanogr. 2019;64:2424–40.
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015. https://doi.org/10.1126/science.1257594 .
Sanders RW. Mixotrophic protists in marine and freshwater ecosystems. J Protozool. 1991;38:76–81.
Jones RI. Mixotrophy in planktonic protists: an overview. Freshw Biol. 2000;45:219–26.
Hartmann M, Zubkov MV, Scanlan DJ, Lepère C. In situ interactions between photosynthetic picoeukaryotes and bacterioplankton in the Atlantic Ocean: evidence for mixotrophy. Environ Microbiol Rep. 2013;5:835–40. (PMID: 24249292)
Unrein F, Gasol JM, Not F, Forn I, Massana R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISMEJ. 2014;8:164–76.
Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, et al. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA. 2012;109:5756–60. (PMID: 224519383326507)
Fuhrman JA, Sleeter TD, Carlson CA, Proctor L. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar Ecol Prog Ser. 1989;57:207–17.
Li WKW. Composition of ultraphytoplankton in the central North Atlantic. Mar Ecol Prog Ser. 1995;122:1–8.
Partensky F, Hess WR, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev. 1999;63:106–27. (PMID: 1006683298958)
Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 2014;11:995–1005.
Ward BA, Follows MJ. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci USA. 2016;113:2958–63. (PMID: 268310764801304)
Sato M, Shiozaki T, Hashihama F. Distribution of mixotrophic nanoflagellates along the latitudinal transect of the central North Pacific. J Oceanogr. 2017;73:159–68.
Connell PE, Ribalet F, Armbrust EV, White A, Caron DA. Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquat Microb Ecol. 2020;85:167–81.
Wilken S, Yung CCM, Hamilton M, Hoadley K, Nzongo J, Eckmann C, et al. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc B. 2019. https://doi.org/10.1098/rstb.2019.0090 .
Cuvelier ML, Allen AE, Monier A, McCrow JP, Messié M, Tringe SG, et al. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc Natl Acad Sci USA. 2010;107:14679–84. (PMID: 206682442930470)
Pierella Karlusich JJ, Ibarbalz FM, Bowler C. Phytoplankton in the Tara ocean. Ann Rev Mar Sci. 2020;12:233–26. (PMID: 31899671)
Campbell L, Vaulot D. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Res I Oceanogr Res Pap. 1993;40:2043–60.
Pasulka AL, Landry MR, Taniguchi DA, Taylor AG, Church MJ. Temporal dynamics of phytoplankton and heterotrophic protists at station ALOHA. Deep Sea Res II Top Stud Oceanogr. 2013;93:44–57.
Frias-Lopez J, Thompson A, Waldbauer J, Chisholm SW. Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol. 2009;11:512–25. (PMID: 191962812702499)
Li Q, Edwards KF, Schvarcz CR, Selph KE, Steward GF. Plasticity in the grazing ecophysiology of Florenciella (Dichtyochophyceae), a mixotrophic nanoflagellate that consumes Prochlorococcus and other bacteria. Limnol Oceanogr. 2021;66:47–60. https://doi.org/10.1002/lno.11585 . (PMID: 10.1002/lno.11585)
Carpenter KJ, Bose M, Polerecky L, Lie AA, Heidelberg KB, Caron DA. Single-cell view of carbon and nitrogen acquisition in the mixotrophic alga Prymnesium parvum (Haptophyta) inferred from stable isotope tracers and NanoSIMS. Front Mar Sci. 2018. https://doi.org/10.3389/fmars.2018.00157 .
Lie AA, Liu Z, Terrado R, Tatters AO, Heidelberg KB, Caron DA. A tale of two mixotrophic chrysophytes: Insights into the metabolisms of two Ochromonas species (Chrysophyceae) through a comparison of gene expression. PLoS ONE. 2018;13:e0192439. (PMID: 294383845811012)
Wilken S, Choi CJ, Worden AZ. Contrasting mixotrophic lifestyles reveal different ecological niches in two closely related marine protists. J Phycol. 2020;56:52–67. (PMID: 31529498)
Keller MD, Selvin RC, Claus W, Guillard RR. Media for the culture of oceanic ultraphytoplankton. J Phycol. 1987;23:633–8.
Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.
Moon-van der Staay SY, De Wachter R, Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001;409:607–10. (PMID: 11214317)
Lepere C, Demura M, Kawachi M, Romac S, Probert I, Vaulot D. Whole-genome amplification (WGA) of marine photosynthetic eukaryote populations. FEMS Microbiol Ecol. 2011;76:513–23. (PMID: 21348885)
Worden AZ. Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Micro Ecol. 2006;43:165–75.
Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41:597–604.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. (PMID: 233296903603318)
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28:1647–9. (PMID: 225433673371832)
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001;17:754–5. (PMID: 11524383)
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.
Frost BW. Feeding behavior of Calanus pacificus in mixtures of food particles. Limnol Oceanogr. 1977;22:472–91.
Heinbokel JF. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar Biol. 1978;47:177–89.
Bolker B, R Development Core Team, Giné-Vázquez I. bbmle: Tools for general maximum likelihood estimation. R package version 1.0.24. 2021. https://cran.r-project.org/web/packages/bbmle/ .
Mueller JA, Culley AI, Steward GF. Variables influencing extraction of nucleic acids from microbial plankton (viruses, bacteria, and protists) collected on nanoporous aluminum oxide filters. Appl Environ Microbiol. 2014;80:3930–42. (PMID: 247479034054216)
Shalchian-Tabrizi K, Reier-Røberg K, Ree DK, Klaveness D, Bråte J. Marine–freshwater colonizations of haptophytes inferred from phylogeny of environmental 18S rDNA sequences. J Eukaryot Microbiol. 2011;58:315–8. (PMID: 21518078)
del Campo J, Massana R. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular protist surveys. Protist 2011;162:435–48. (PMID: 21239227)
Chisholm SW. Unveiling Prochlorococcus: the life and times of the ocean’s smallest photosynthetic cell. In: Kolter R, Maloy S, editors. Microbes and evolution: the world that Darwin never saw. Washington, D.C.: ASM Press; 2012. p. 165–71.
Zhu F, Massana R, Not F, Marie D, Vaulot D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol. 2005;52:79–92. (PMID: 16329895)
Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019. https://doi.org/10.3389/fmars.2019.00219 .
Karl DM, Church MJ. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat Rev Microbiol. 2014;12:699–713. (PMID: 25157695)
Rii YM. Ecology of photosynthetic picoeukaryotes in the oligotrophic ocean: diversity, activity, and dynamics, Doctoral dissertation. University of Hawai’i at Mānoa, Honolulu; 2016.
Wilken S, Schuurmans JM, Matthijs HC. Do mixotrophs grow as photoheterotrophs? Photophysiological acclimation of the chrysophyte Ochromonas danica after feeding. N Phytol. 2014;204:882–9.
Terrado R, Pasulka AL, Lie AA, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISMEJ. 2017;11:2022–34.
Kiørboe T. How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev. 2011;86:311–39. (PMID: 20682007)
Calbet A, Landry MR, Nunnery S. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquat Micro Ecol. 2001;23:283–92.
Li B, Karl DM, Letelier RM, Bidigare RR, Church MJ. Variability of chromophytic phytoplankton in the North Pacific Subtropical Gyre. Deep Sea Res II Top Stud Oceanogr. 2013;93:84–95.
Liu H, Nolla HA, Campbell L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Micro Ecol. 1997;12:39–47.
معلومات مُعتمدة: OCE 15-59356 National Science Foundation (NSF); OIA 17-36030 National Science Foundation (NSF); OCE 15-59356 Simons Foundation
تواريخ الأحداث: Date Created: 20220211 Date Completed: 20220524 Latest Revision: 20221020
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC9122939
DOI: 10.1038/s41396-022-01204-z
PMID: 35145244
قاعدة البيانات: MEDLINE
الوصف
تدمد:1751-7370
DOI:10.1038/s41396-022-01204-z