دورية أكاديمية

Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway.

التفاصيل البيبلوغرافية
العنوان: Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway.
المؤلفون: Zhang S; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China., Kong DW; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China., Ma GD; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China., Liu CD; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China., Yang YJ; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China., Liu S; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.; College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China., Jiang N; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.; School of Pharmacy, Henan University, Zhengzhou, 475004, China., Pan ZR; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China., Zhang W; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China., Kong LL; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China. konglinglei@imm.ac.cn., Du GH; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China. dugh@imm.ac.cn.
المصدر: Acta pharmacologica Sinica [Acta Pharmacol Sin] 2022 Sep; Vol. 43 (9), pp. 2212-2225. Date of Electronic Publication: 2022 Feb 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 100956087 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-7254 (Electronic) Linking ISSN: 16714083 NLM ISO Abbreviation: Acta Pharmacol Sin Subsets: MEDLINE
أسماء مطبوعة: Publication: 2009- : New York : Nature Publishing Group
Original Publication: Beijing, China : Science Press, c2000-
مواضيع طبية MeSH: Ischemic Stroke* , Stroke*/drug therapy , Stroke*/pathology, Animals ; Caffeic Acids ; Edaravone/therapeutic use ; Glycogen Synthase Kinase 3 beta/metabolism ; Lactates ; Neurogenesis ; Rats ; Signal Transduction ; Wnt3A Protein/metabolism ; beta Catenin/metabolism
مستخلص: Stroke is the major cause of death and disability worldwide. Most stroke patients who survive in the acute phase of ischemia display various extents of neurological deficits. In order to improve the prognosis of ischemic stroke, promoting endogenous neurogenesis has attracted great attention. Salvianolic acid A (SAA) has shown neuroprotective effects against ischemic diseases. In the present study, we investigated the neurogenesis effects of SAA in ischemic stroke rats, and explored the underlying mechanisms. An autologous thrombus stroke model was established by electrocoagulation. The rats were administered SAA (10 mg/kg, ig) or a positive drug edaravone (5 mg/kg, iv) once a day for 14 days. We showed that SAA administration significantly decreased infarction volume and vascular embolism, and ameliorated pathological injury in the hippocampus and striatum as well as the neurological deficits as compared with the model rats. Furthermore, we found that SAA administration significantly promoted neural stem/progenitor cells (NSPCs) proliferation, migration and differentiation into neurons, enhanced axonal regeneration and diminished neuronal apoptosis around the ipsilateral subventricular zone (SVZ), resulting in restored neural density and reconstructed neural circuits in the ischemic striatum. Moreover, we revealed that SAA-induced neurogenesis was associated to activating Wnt3a/GSK3β/β-catenin signaling pathway and downstream target genes in the hippocampus and striatum. Edaravone exerted equivalent inhibition on neuronal apoptosis in the SVZ, as SAA, but edaravone-induced neurogenesis was weaker than that of SAA. Taken together, our results demonstrate that long-term administration of SAA improves neurological function through enhancing endogenous neurogenesis and inhibiting neuronal apoptosis in ischemic stroke rats via activating Wnt3a/GSK3β/β-catenin signaling pathway. SAA may be a potential therapeutic drug to promote neurogenesis after stroke.
(© 2022. The Author(s), under exclusive licence to CPS and SIMM.)
References: Font MA, Arboix A, Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev. 2010;6:238–44. (PMID: 21804783299411610.2174/157340310791658802)
Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA. 2006;103:13198–202. (PMID: 16924107155977610.1073/pnas.0603512103)
Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol. 2020;49:3–16. (PMID: 3156860210.1111/ahe.12496)
Tanaka R, Yamashiro K, Mochizuki H, Cho N, Onodera M, Mizuno Y, et al. Neurogenesis after transient global ischemia in the adult hippocampus visualized by improved retroviral vector. Stroke. 2004;35:1454–9. (PMID: 1507339210.1161/01.STR.0000126480.40967.b3)
Yamashita T, Ninomiya M, Hernández Acosta P, García-Verdugo JM, Sunabori T, Sakaguchi M, et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci. 2006;26:6627–36. (PMID: 16775151667403410.1523/JNEUROSCI.0149-06.2006)
Jin K, Wang X, Xie L, Mao XO, Greenberg DA. Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci USA. 2010;107:7993–8. (PMID: 20385829286785210.1073/pnas.1000154107)
Bacigaluppi M, Pluchino S, Peruzzotti JL, Jametti LP, Kilic E, Kilic U, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132:2239–51. (PMID: 1961719810.1093/brain/awp174)
Yoshida Y, Takagi T, Kuramoto Y, Tatebayashi K, Shirakawa M, Yamahara K, et al. Intravenous administration of human amniotic mesenchymal stem cells in the subacute phase of cerebral infarction in a mouse model ameliorates neurological disturbance by suppressing blood brain barrier disruption and apoptosis via immunomodulation. Cell Transplant. 2021;30:9636897211024183. (PMID: 3414464710.1177/09636897211024183)
Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed Pharmacother. 2021;140:111709. (PMID: 3402025010.1016/j.biopha.2021.111709)
Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8:963–70. (PMID: 1216174710.1038/nm747)
Lian-Niang L, Rui T, Wei-Ming C. Salvianolic Acid A, a New Depside from Roots of Salvia miltiorrhiza. Planta Med. 1984;50:227–8. (PMID: 1734030110.1055/s-2007-969684)
Pei LX, Bao YW, Wang HD, Yang F, Xu B, Wang SB, et al. A sensitive method for determination of salvianolic acid A in rat plasma using liquid chromatography/tandem mass spectrometry. Biomed Chromatogr. 2008;22:786–94. (PMID: 1850691110.1002/bmc.1043)
Feng SQ, Aa N, Geng JL, Huang JQ, Sun RB, Ge C, et al. Pharmacokinetic and metabolomic analyses of the neuroprotective effects of salvianolic acid A in a rat ischemic stroke model. Acta Pharmacol Sin. 2017;38:1435–44. (PMID: 28836583567206910.1038/aps.2017.114)
Zhang W, Song J-K, Yan R, He G-R, Zhang X, Zhou Q-M, et al. Salvianolic acid A alleviate the brain damage in rats after cerebral ischemia-reperfusion through Nrf2/HO-1 pathway. Yao Xue Xue Bao. 2016;51:1717–23. (PMID: 29908115)
Qian W, Wang Z, Xu T, Li D. Anti-apoptotic effects and mechanisms of salvianolic acid A on cardiomyocytes in ischemia-reperfusion injury. Histol Histopathol. 2019;34:223–31. (PMID: 30255492)
Song J, Zhang W, Wang J, Yang H, Zhou Q, Wang H, et al. Inhibition of FOXO3a/BIM signaling pathway contributes to the protective effect of salvianolic acid A against cerebral ischemia/reperfusion injury. Acta Pharm Sin B. 2019;9:505–15. (PMID: 31193821654303410.1016/j.apsb.2019.01.010)
Zhao J, Li L, Fang G. Salvianolic acid A attenuates cerebral ischemia/reperfusion injury induced rat brain damage, inflammation and apoptosis by regulating miR-499a/DDK1. Am J Transl Res. 2020;12:3288–301. (PMID: 327747007407710)
Zhang W, Song JK, Zhang X, Zhou QM, He GR, Xu XN, et al. Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation. Chin J Nat Med. 2018;16:184–93. (PMID: 29576054)
Chien MY, Chuang CH, Chern CM, Liou KT, Liu DZ, Hou YC, et al. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice. Free Radic Biol Med. 2016;99:508–19. (PMID: 2760922710.1016/j.freeradbiomed.2016.09.006)
Liu CD, Liu NN, Zhang S, Ma GD, Yang HG, Kong LL, et al. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol Sin. 2021;42:370–81. (PMID: 3330399110.1038/s41401-020-00568-2)
Mahmood Q, Wang GF, Wu G, Wang H, Zhou CX, Yang HY, et al. Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice. Phytomedicine. 2017;15:8–14. (PMID: 10.1016/j.phymed.2016.12.004)
Jiao CX, Zhou H, Yang CX, Ma C, Yang YX, Mao RR, et al. Protective efficacy of a single salvianolic acid A treatment on photothrombosis-induced sustained spatial memory impairments. Neuropsychiatr Dis Treat. 2017;26:1181–92. (PMID: 10.2147/NDT.S127094)
Ma YZ, Li L, Song JK, Niu ZR, Liu HF, Zhou XS, et al. A novel embolic middle cerebral artery occlusion model induced by thrombus formed in common carotid artery in rat. J Neurol Sci. 2015;359:275–9. (PMID: 2667112710.1016/j.jns.2015.09.362)
Xu C, Hou B, He P, Ma P, Yang X, Yang X, et al. Neuroprotective effect of salvianolic acid A against diabetic peripheral neuropathy through modulation of Nrf2. Oxid Med Cell Longev. 2020;2020:6431459. (PMID: 32184918706319510.1155/2020/6431459)
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91. (PMID: 264320210.1161/01.STR.20.1.84)
Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:2682–8. (PMID: 1169203410.1161/hs1101.098367)
Bárez-López S, Bosch-García D, Gómez-Andrés D, Pulido-Valdeolivas I, Montero-Pedrazuela A, Obregon MJ, et al. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS ONE. 2014;9:e103857. (PMID: 25083788411896310.1371/journal.pone.0103857)
Kong LL, Wang ZY, Han N, Zhuang XM, Wang ZZ, Li H, et al. Neutralization of chemokine-like factor 1, a novel C-C chemokine, protects against focal cerebral ischemia by inhibiting neutrophil infiltration via MAPK pathways in rats. Neuroinflammation. 2014;11:112. (PMID: 10.1186/1742-2094-11-112)
Hinman JD. The back and forth of axonal injury and repair after stroke. Curr Opin Neurol. 2014;27:615–23. (PMID: 25364952445974110.1097/WCO.0000000000000149)
Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24:739–47. (PMID: 1621040410.1634/stemcells.2005-0281)
Li Y, Huang J, He X, Tang G, Tang Y-H, Liu Y, et al. Postacute stromal cell-derived factor-1α expression promotes neurovascular recovery in ischemic mice. Stroke. 2014;45:1822–9. (PMID: 2487626210.1161/STROKEAHA.114.005078)
Wang SN, Wang Z, Xu TY, Cheng MH, Li WL, Miao CY. Cerebral Organoids Repair Ischemic Stroke Brain Injury. Transl Stroke Res. 2020;11:983–1000. (PMID: 3188924310.1007/s12975-019-00773-0)
Ma Y, Li L, Niu Z, Song J, Lin Y, Zhang H, et al. Effect of recombinant plasminogen activator timing on thrombolysis in a novel rat embolic stroke model. Pharmacol Res. 2016;107:291–9. (PMID: 2703853210.1016/j.phrs.2016.03.030)
Patel RaG, Mcmullen PW. Neuroprotection in the Treatment of Acute Ischemic Stroke. Prog Cardiovasc Dis. 2017;59:542–8. (PMID: 2846500110.1016/j.pcad.2017.04.005)
Ruan L, Wang B, Zhuge Q, Jin K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 2015;1623:166–73. (PMID: 25736182455261510.1016/j.brainres.2015.02.042)
George PM, Steinberg GK. Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron. 2015;87:297–309. (PMID: 26182415491181410.1016/j.neuron.2015.05.041)
Janowski M, Wagner DC, Boltze J. Stem cell-based tissue replacement after stroke: factual necessity or notorious fiction? Stroke. 2015;46:2354–63. (PMID: 26106118451941010.1161/STROKEAHA.114.007803)
Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15:36–45. (PMID: 29333086576573810.7150/ijms.21666)
Song P, Xia X, Han T, Fang H, Wang Y, Dong F, et al. BMSCs promote the differentiation of NSCs into oligodendrocytes via mediating Id2 and Olig expression through BMP/Smad signaling pathway. Biosci Rep. 2018;38:BSR20180303. (PMID: 30143582614791910.1042/BSR20180303)
Daynac M, Morizur L, Chicheportiche A, Mouthon M-A, Boussin FD. Age-related neurogenesis decline in the subventricular zone is associated with specific cell cycle regulation changes in activated neural stem cells. Sci Rep. 2016;6:21505. (PMID: 26893147475959010.1038/srep21505)
Cuartero MI, De La Parra J, Pérez-Ruiz A, Bravo-Ferrer I, Durán-Laforet V, García-Culebras A, et al. Abolition of aberrant neurogenesis ameliorates cognitive impairment after stroke in mice. J Clin Invest. 2019;129:1536–50. (PMID: 30676325643687510.1172/JCI120412)
Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab. 2004;24:441–8. (PMID: 1508771310.1097/00004647-200404000-00009)
Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167:897–914. (PMID: 2781452010.1016/j.cell.2016.10.021)
Von Bohlen Und Halbach O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 2007;329:409–20. (PMID: 10.1007/s00441-007-0432-4)
Von Bohlen Und Halbach O. Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res. 2011;345:1–19. (PMID: 10.1007/s00441-011-1196-4)
Li MZ, Zhang Y, Zou HY, Ouyang JY, Zhan Y, Yang L, et al. Investigation of Ginkgo biloba extract (EGb 761) promotes neurovascular restoration and axonal remodeling after embolic stroke in rat using magnetic resonance imaging and histopathological analysis. Biomed Pharmacother. 2018;103:989–1001. (PMID: 2971051610.1016/j.biopha.2018.04.125)
Xu D, Li F, Xue G, Hou K, Fang W, Li Y. Effect of Wnt signaling pathway on neurogenesis after cerebral ischemia and its therapeutic potential. Brain Res Bull. 2020;164:1–13. (PMID: 3276328310.1016/j.brainresbull.2020.07.005)
Xu D, Hou K, Li F, Chen S, Fang W, Li Y. XQ-1H alleviates cerebral ischemia in mice through inhibition of apoptosis and promotion of neurogenesis in a Wnt/beta-catenin signaling dependent way. Life Sci. 2019;235:116844. (PMID: 3149906910.1016/j.lfs.2019.116844)
Yang X, Song D, Chen L, Xiao H, Ma X, Jiang Q, et al. Curcumin promotes neurogenesis of hippocampal dentate gyrus via Wnt/beta-catenin signal pathway following cerebral ischemia in mice. Brain Res. 2021;1751:147197. (PMID: 3316095810.1016/j.brainres.2020.147197)
Sun FL, Wang W, Zuo W, Xue JL, Xu JD, Ai HX, et al. Promoting neurogenesis via Wnt/beta-catenin signaling pathway accounts for the neurorestorative effects of morroniside against cerebral ischemia injury. Eur J Pharmacol. 2014;738:214–21. (PMID: 2487605710.1016/j.ejphar.2014.05.019)
Van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136:3205–14. (PMID: 1973632110.1242/dev.033910)
Willert K, Nusse R. Wnt proteins. Cold Spring Harb Perspect Biol. 2012;4:a007864. (PMID: 22952392342877410.1101/cshperspect.a007864)
Kriska J, Janeckova L, Kirdajova D, Honsa P, Knotek T, Dzamba D, et al. Wnt/β-catenin signaling promotes differentiation of ischemia-activated adult neural stem/progenitor cells to neuronal precursors. Front Neurosci. 2021;15:628983. (PMID: 33716653794769810.3389/fnins.2021.628983)
Wiese KE, Nusse R, Van Amerongen R. Wnt signalling: conquering complexity. Development. 2018;145:dev165902. (PMID: 2994598610.1242/dev.165902)
Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437:1370–5. (PMID: 1625196710.1038/nature04108)
Chern CM, Wang YH, Liou KT, Hou YC, Chen CC, Shen YC. 2-Methox-ystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke. Biochem Pharmacol. 2014;87:502–14. (PMID: 2434270210.1016/j.bcp.2013.11.018)
Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303:1483–7. (PMID: 15001769337289610.1126/science.1094291)
Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci. 2009;12:1097–105. (PMID: 19701198276426010.1038/nn.2360)
Menet R, Lecordier S, Elali A. Wnt pathway: an emerging player in vascular and traumatic mediated brain injuries. Front Physiol. 2020;11:565667. (PMID: 33071819753028110.3389/fphys.2020.565667)
Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158:1021–9. (PMID: 1866274810.1016/j.neuroscience.2008.06.052)
Luo Y, Kuo CC, Shen H, Chou J, Greig NH, Hoffer BJ, et al. Delayed treatment with a p53 inhibitor enhances recovery in stroke brain. Ann Neurol. 2009;65:520–30. (PMID: 19475672269061410.1002/ana.21592)
Lei ZN, Liu F, Zhang LM, Huang YL, Sun FY. Bcl-2 increases stroke-induced striatal neurogenesis in adult brains by inhibiting BMP-4 function via activation of β-catenin signaling. Neurochem Int. 2012;61:34–42. (PMID: 2252177210.1016/j.neuint.2012.04.004)
Yamamoto T, Yuki S, Watanabe T, Mitsuka M, Saito KI, Kogure K. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res. 1997;762:240–2. (PMID: 926218210.1016/S0006-8993(97)00490-3)
Kikuchi K, Uchikado H, Miyagi N, Morimoto Y, Ito T, Tancharoen S, et al. Beyond neurological disease: new targets for edaravone (Review). Int J Mol Med. 2011;28:899–906. (PMID: 21922128)
Yamashita T, Shoge M, Oda E, Yamamoto Y, Giddings JC, Kashiwagi S, et al. The free-radical scavenger, edaravone, augments NO release from vascular cells and platelets after laser-induced, acute endothelial injury in vivo. Platelets. 2006;17:201–6. (PMID: 1670204810.1080/09537100500444063)
Wang JH, Qu Y, Ray PS, Guo H, Huang J, Shin-Sim M, et al. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-κB signaling. J Clin Invest. 2011;121:212–25. (PMID: 2112394810.1172/JCI43144)
Kikuta M, Shiba T, Yoneyama M, Kawada K, Yamaguchi T, Hinoi E, et al. In vivo and in vitro treatment with edaravone promotes proliferation of neural progenitor cells generated following neuronal loss in the mouse dentate gyrus. Pharmacol Sci. 2013;121:74–83. (PMID: 10.1254/jphs.12162FP)
Yoneyama M, Kawada K, Gotoh Y, Shiba T, Ogita K. Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int. 2010;56:740–6. (PMID: 1995880710.1016/j.neuint.2009.11.018)
Yoneyama M, Kawada K, Shiba T, Ogita K. Endogenous nitric oxide generation linked to ryanodine receptors activates cyclic GMP/protein kinase G pathway for cell proliferation of neural stem/progenitor cells derived from embryonic hippocampus. J Pharm Sci. 2011;115:182–95. (PMID: 10.1254/jphs.10290FP)
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44:532–53. (PMID: 2914519110.1159/000485089)
Zucker B, Hanusch J, Bauer G. Glutathione depletion in fibroblasts is the basis for apoptosis-induction by endogenous reactive oxygen species. Cell Death Differ. 1997;4:388–95. (PMID: 1646525710.1038/sj.cdd.4400258)
فهرسة مساهمة: Keywords: Wnt3a/GSK3β/β-catenin signaling; hippocampus; ischemic stroke; neurogenesis; salvianolic acid A; striatum
المشرفين على المادة: 0 (Caffeic Acids)
0 (Lactates)
0 (Wnt3A Protein)
0 (beta Catenin)
51622542XO (salvianolic acid A)
EC 2.7.11.1 (Glycogen Synthase Kinase 3 beta)
S798V6YJRP (Edaravone)
تواريخ الأحداث: Date Created: 20220226 Date Completed: 20220907 Latest Revision: 20230902
رمز التحديث: 20230902
مُعرف محوري في PubMed: PMC9433393
DOI: 10.1038/s41401-021-00844-9
PMID: 35217812
قاعدة البيانات: MEDLINE