دورية أكاديمية

Cross-protection, infection and case fatality rates in wild European rabbits experimentally challenged with different rabbit haemorrhagic disease viruses.

التفاصيل البيبلوغرافية
العنوان: Cross-protection, infection and case fatality rates in wild European rabbits experimentally challenged with different rabbit haemorrhagic disease viruses.
المؤلفون: Patel KK; Department of Primary Industries and Regions (PIRSA), Biosecurity, Urrbrae, South Australia, Australia.; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia., Strive T; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia.; Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, Australian Capital Territory, Australia., Hall RN; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia.; Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, Australian Capital Territory, Australia., Mutze G; Department of Primary Industries and Regions (PIRSA), Biosecurity, Urrbrae, South Australia, Australia., Page B; Department of Primary Industries and Regions (PIRSA), Biosecurity, Urrbrae, South Australia, Australia.; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia., Korcz M; Department of Primary Industries and Regions (PIRSA), Biosecurity, Urrbrae, South Australia, Australia., Booth-Remmers M; Department of Primary Industries and Regions (PIRSA), Biosecurity, Urrbrae, South Australia, Australia.; Australian Wildlife Conservancy, Subiaco, Western Australia, Australia., Smith IL; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia., Huang N; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia.; Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, Australian Capital Territory, Australia., Kovaliski J; Department of Primary Industries and Regions (PIRSA), Biosecurity, Urrbrae, South Australia, Australia.; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia., Jayasinghe Ellakkala Appuhamilage RMJ; Department of Primary Industries and Regions (PIRSA), Biosecurity, Urrbrae, South Australia, Australia.; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia., Taggart PL; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.; Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, Australia.; Department of Primary Industries NSW, Vertebrate Pest Research Unit, Queanbeyan, New South Wales, Australia.
المصدر: Transboundary and emerging diseases [Transbound Emerg Dis] 2022 Sep; Vol. 69 (5), pp. e1959-e1971. Date of Electronic Publication: 2022 Apr 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Verlag Country of Publication: Germany NLM ID: 101319538 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1865-1682 (Electronic) Linking ISSN: 18651674 NLM ISO Abbreviation: Transbound Emerg Dis Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Blackwell Verlag
مواضيع طبية MeSH: Caliciviridae Infections*/veterinary , Hemorrhagic Disease Virus, Rabbit* , Lagovirus*, Animals ; Phylogeny ; Rabbits ; Seroepidemiologic Studies
مستخلص: Rabbit haemorrhagic disease virus 2 (RHDV2) is now the dominant calicivirus circulating in wild rabbit populations in Australia. This study compared the infection and case fatality rates of RHDV2 and two RHDVs in wild rabbits, as well as their ability to overcome immunity to the respective other strains. Wild rabbits were allocated to groups either blindly or based on pre-screening for RHDV/RHDV2 antibodies at capture. Rabbits were monitored regularly until their death or humane killing at 7 days post infection. Liver and eyeball samples were collected for lagovirus testing and aging rabbits, respectively. At capture, rabbits showed high seroprevalence to RHDV2 but not to RHDV. In RHDV/RHDV2 seronegative rabbits at capture, infection rates were highest in those inoculated with RHDV2 (81.8%, 18 out of 22), followed by K5 (53.8%, seven out of 13) and CZECH (40.0%, two out of five), but these differences were not statistically significant. In rabbits with previous exposure to RHDV2 at capture, infection rates were highest when inoculated with K5 (59.6%, 31 out of 52) followed by CZECH (46.0%, 23 out of 50), with infection rates higher in younger rabbits for both viruses. In RHDV/RHDV2 seronegative rabbits at capture, case fatality rates were highest for those inoculated with K5 (71.4%), followed by RHDV2 (50.0%) and CZECH (50.0%). In rabbits with previous exposure to RHDV2 at capture, case fatality rates were highest in rabbits inoculated with K5 (12.9%) followed by CZECH (8.7%), with no case fatalities following RHDV2 inoculation. Case fatality rates did not differ significantly between inoculums in either serostatus group at capture. Based on multivariable modelling, time to death post RHDV inoculation increased in rabbits with recent RHDV2 exposure compared with seronegative rabbits and with age. The results suggest that RHDV2 may cause higher mortalities than other variants in seronegative rabbit populations but that K5 may be more effective in reducing rabbit populations in an RHDV2-dominant landscape.
(© 2022 Wiley-VCH GmbH.)
References: Alves, J. M., Carneiro, M., Cheng, J. Y., Matos, A. L. d., Rahman, M. M., Loog, L., Campos, P. F., Wales, N., Eriksson, A., Manica, A., Strive, T., Graham, S. C., Afonso, S., Bell, D. J., Belmont, L., Day, J. P., Fuller, S. J., Marchandeau, S., Palmer, W. J., …, & Jiggins, F. M. (2019). Parallel adaptation of rabbit populations to myxoma virus. Science, 363(6433), 1319-1326. https://doi.org/10.1126/science.aau7285.
Augusteyn, R. C. (2007). On the relationship between rabbit age and lens dry weight: Improved determination of the age of rabbits in the wild. Molecular Vision, 13(229-30), 2030-2034.://WOS:000250808300001.
Baratelli, M., Molist-Badiola, J., Puigredon-Fontanet, A., Pascual, M., Boix, O., Mora-Igual, F. X., Woodward, M., Lavazza, A., & Capucci, L. (2020). Characterization of the maternally derived antibody immunity against Rhdv-2 after administration in breeding does of an inactivated vaccine. Vaccines, 8(3), 484. https://doi.org/10.3390/vaccines8030484.
Barnett, L. K., Prowse, T. A. A., Peacock, D. E., Mutze, G. J., Sinclair, R. G., Kovaliski, J., Cooke, B. D., & Bradshaw, C. J. A. (2018). Previous exposure to myxoma virus reduces survival of European rabbits during outbreaks of rabbit haemorrhagic disease. Journal of Applied Ecology, 55(6), 2954-2962. https://doi.org/10.1111/1365-2664.13187.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. arXiv pre-print server. https://doi.org/10.48550/arXiv.1406.5823.
Bradshaw, C. J. A., Hoskins, A. J., Haubrock, P. J., Cuthbert, R. N., Diagne, C., Leroy, B., Andrews, L., Page, B., Cassey, P., Sheppard, A. W., & Courchamp, F. (2021). Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota, 67, 511-550. https://doi.org/10.3897/neobiota.67.58834.
Calvete, C., Mendoza, M., Alcaraz, A., Sarto, M. P., Jiménez-De-Bagüéss, M. P., Calvo, A. J., Monroy, F., & Calvo, J. H. (2018). Rabbit haemorrhagic disease: Cross-protection and comparative pathogenicity of GI.2/RHDV2/b and GI.1b/RHDV lagoviruses in a challenge trial. Veterinary Microbiology, 219, 87-95. https://doi.org/10.1016/j.vetmic.2018.04.018.
Capucci, L., Cavadini, P., Schiavitto, M., Lombardi, G., & Lavazza, A. (2017). Increased pathogenicity in rabbit haemorrhagic disease virus type 2 (RHDV2). Veterinary Record, 180(17), 426-426. https://doi.org/10.1136/vr.104132.
Capucci, L., Scicluna, M. T., & Lavazza, A. (1991). Diagnosis of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Revue Scientifique Et Technique (International Office of Epizootics), 10(2), 347-370. https://doi.org/10.20506/rst.10.2.561.
Centre for Invasive Species Solutions. (2020). Rabbit humaneness matrix. Retrieved 8/10/2021, from https://pestsmart.org.au/toolkit-resource/rabbit-humaneness-matrix/.
Cooke, B. D. (1990). Rabbit burrows as environments for european rabbit fleas, spilopsyllus-cuniculi (Dale), in Arid South-Australia. Australian Journal of Zoology, 38(3), 317-325. ://A1990EB96000007.
Cooke, B. D. (1996). Analysis of the Spread of Rabbit Calicivirus from Wardang Island through Mainland Australia - Field evaluation of RCD under quarantine.
Cooke, B. D., Duncan, R. P., McDonald, I., Liu, J., Capucci, L., Mutze, G. J., & Strive, T. (2018). Prior exposure to non-pathogenic calicivirus RCV-A1 reduces both infection rate and mortality from rabbit haemorrhagic disease in a population of wild rabbits in Australia. Transboundary and Emerging Diseases, 65(2), e470-e477. https://doi.org/10.1111/tbed.12786.
Cooke, B. D., & Fenner, F. (2002). Rabbit haemorrhagic disease and the biological control of wild rabbits, Oryctolagus cuniculus, in Australia and New Zealand. Wildlife Research, 29(6), 689. https://doi.org/10.1071/wr02010.
Cooke, B. D., Robinson, A. J., Merchant, J. C., Nardin, A., & Capucci, L. (2000). Use of ELISAs in field studies of rabbit haemorrhagic disease (RHD) in Australia. Epidemiology and Infection, 124(3), 563-576. https://doi.org/10.1017/s0950268899003994.
Cox, T. E., Ramsey, D. S. L., Sawyers, E., Campbell, S., Matthews, J., & Elsworth, P. (2019). The impact of RHDV-K5 on rabbit populations in Australia: An evaluation of citizen science surveys to monitor rabbit abundance. Scientific Reports, 9(1),. https://doi.org/10.1038/s41598-019-51847-w.
Dalton, K. P., Abrantes, J., Lopes, A. M., Nicieza, I., Álvarez, Á. L., Esteves, P. J., & Parra, F. (2015). Complete genome sequence of two rabbit hemorrhagic disease virus variant b isolates detected on the Iberian Peninsula. Archives of Virology, 160(3), 877-881. https://doi.org/10.1007/s00705-014-2329-3.
Dalton, K. P., Balseiro, A., Juste, R. A., Podadera, A., Nicieza, I., Del Llano, D., González, R., Martin Alonso, J. M., Prieto, J. M., Parra, F., & Casais, R. (2018). Clinical course and pathogenicity of variant rabbit haemorrhagic disease virus in experimentally infected adult and kit rabbits: Significance towards control and spread. Veterinary Microbiology, 220, 24-32. https://doi.org/10.1016/j.vetmic.2018.04.033.
Elsworth, P., Cooke, B. D., Kovaliski, J., Sinclair, R., Holmes, E. C., & Strive, T. (2014). Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus). Virology, 464-465, 415-423. https://doi.org/10.1016/j.virol.2014.06.037.
Elsworth, P. G., Kovaliski, J., & Cooke, B. D. (2012). Rabbit haemorrhagic disease: Are Australian rabbits (Oryctolagus cuniculus) evolving resistance to infection with Czech CAPM 351 RHDV? Epidemiology and Infection, 140(11), 1972-1981. https://doi.org/10.1017/s0950268811002743.
Fenner, F., Marshall, I. D., & Woodroofe, G. M. (1953). Studies in the epidemiology of infectious myxomatosis of rabbits: I. Recovery of Australian wild rabbits (Oryctolagus Cuniculus) from myxomatosis under field conditions. Journal of Hygiene, 51(2), 225-244. https://doi.org/10.1017/s0022172400015655.
Finlayson, G., Taggart, P., & Cooke, B. (2021). Recovering Australia's arid-zone ecosystems: Learning from continental-scale rabbit control experiments. Restoration Ecology, https://doi.org/10.1111/rec.13552.
Flávia Nardy, A., Freire-De-Lima, C. G., & Morrot, A. (2015). Immune evasion strategies of trypanosoma cruzi. Journal of Immunology Research, 2015, 1-7. https://doi.org/10.1155/2015/178947.
Gong, W., Sinden, J. A., Braysher, M. L., & Jones, R. (2009). The economic impacts of vertebrate pests in Australia.
Hall, R. N., King, T., O'Connor, T., Read, A. J., Arrow, J., Trought, K., Duckworth, J., Piper, M., & Strive, T. (2021). Age and infectious dose significantly affect disease progression after RHDV2 infection in naïve domestic rabbits. Viruses, 13(6), 1184. https://doi.org/10.3390/v13061184.
Hall, R. N., Mahar, J. E., Haboury, S., Stevens, V., Holmes, E. C., & Strive, T. (2015). Emerging rabbit hemorrhagic disease virus 2 (RHDVb), Australia. Emerging Infectious Diseases, 21(12), 2276-2278. https://doi.org/10.3201/eid2112.151210.
Hall, R. N., Mahar, J. E., Read, A. J., Mourant, R., Piper, M., Huang, N., & Strive, T. (2018). A strain-specific multiplex RT-PCR for Australian rabbit haemorrhagic disease viruses uncovers a new recombinant virus variant in rabbits and hares. Transboundary and Emerging Diseases, 65(2), e444-e456. https://doi.org/10.1111/tbed.12779.
Hall, R. N., Tran, L., Huang, N., Smith, I. & Strive, T. (2021a). Rabbit calicivirus capsid Taqman RT-qPCRV.1. https://doi.org/10.17504/protocols.io.zkff4tn.
Kassambara, A., Kosinski, M., & Biecek, P. (2021). survminer: Drawing Survival Curves using 'ggplot2'. In (Version R package version 0.4.9) https://CRAN.R-project.org/package=survminer.
Kearney, S. G., Carwardine, J., Reside, A. E., Fisher, D. O., Maron, M., Doherty, T. S., Legge, S., Silcock, J., Woinarski, J. C. Z., Garnett, S. T., Wintle, B. A., & Watson, J. E. M. (2019). The threats to Australia's imperilled species and implications for a national conservation response. Pacific Conservation Biology, 25(3), 231. https://doi.org/10.1071/pc18024.
Kovaliski, J., Sinclair, R., Mutze, G., Peacock, D., Strive, T., Abrantes, J., Esteves, P. J., & Holmes, E. C. (2014). Molecular epidemiology of rabbit haemorrhagic disease virus in Australia: When one became many. Molecular Ecology, 23(2), 408-420. https://doi.org/10.1111/mec.12596.
Le Gall-Reculé, G., Lavazza, A., Marchandeau, S., Bertagnoli, S., Zwingelstein, F., Cavadini, P., Martinelli, N., Lombardi, G., Guérin, J.-L., Lemaitre, E., Decors, A., Boucher, S., Le Normand, B., & Capucci, L. (2013). Emergence of a new lagovirus related to rabbit haemorrhagic disease virus. Veterinary Research, 44(1), 81. https://doi.org/10.1186/1297-9716-44-81.
Liu, J., Fordham, D. A., Cooke, B. D., Cox, T., Mutze, G., & Strive, T. (2014). Distribution and prevalence of the Australian non-pathogenic rabbit calicivirus is correlated with rainfall and temperature. PLoS One, 9(12), e113976. https://doi.org/10.1371/journal.pone.0113976.
Liu, J. E., Kerr, P. J., & Strive, T. (2012). A sensitive and specific blocking ELISA for the detection of rabbit calicivirus RCV-A1 antibodies. Virology Journal, 9(5), Article 182. https://doi.org/10.1186/1743-422x-9-182.
Liu, J. N., Kerr, P. J., Wright, J. D., & Strive, T. (2012). Serological assays to discriminate rabbit haemorrhagic disease virus from Australian non-pathogenic rabbit calicivirus. Veterinary Microbiology, 157(3-4), 345-354. https://doi.org/10.1016/j.vetmic.2012.01.018.
Mahar, J. E., Hall, R. N., Peacock, D., Kovaliski, J., Piper, M., Mourant, R., Huang, N., Campbell, S., Gu, X., Read, A., Urakova, N., Cox, T., Holmes, E. C., & Strive, T. (2018). Rabbit hemorrhagic disease virus 2 (RHDV2; GI.2) is replacing endemic strains of RHDV in the Australian landscape within 18 months of its arrival. Journal of Virology, 92(2),. https://doi.org/10.1128/jvi.01374-17.
Mahar, J. E., Jenckel, M., Huang, N., Smertina, E., Holmes, E. C., Strive, T., & Hall, R. N. (2021). Frequent intergenotypic recombination between the non-structural and structural genes is a major driver of epidemiological fitness in caliciviruses. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.02.17.431744.
Mangiafico, S. (2021). Rcompanion: Functions to Support Extension Education Program Evaluation. In https://CRAN.R-project.org/package=rcompanion.
Marshall, I. D., & Fenner, F. (1960). Studies in the epidemiology of infectious myxomatosis of rabbits: VII. The virulence of strains of myxoma virus recovered from Australian wild rabbits between 1951 and 1959. Epidemiology and Infection, 58(4), 485-488. https://doi.org/10.1017/s0022172400038614.
Mutze, G., Bird, P., Jennings, S., Peacock, D., De Preu, N., Kovaliski, J., Cooke, B., & Capucci, L. (2014). Recovery of South Australian rabbit populations from the impact of rabbit haemorrhagic disease. Wildlife Research, 41(7), 552. https://doi.org/10.1071/wr14107.
Mutze, G., Cooke, B., & Alexander, P. (1998). The initial impact of rabbit haemorrhagic disease on European rabbit populations in South Australia. Journal of Wildlife Diseases, 34(2), 221-227. https://doi.org/10.7589/0090-3558-34.2.221.
Mutze, G., De Preu, N., Mooney, T., Koerner, D., McKenzie, D., Sinclair, R., Kovaliskli, J., & Peacock, D. (2018). Substantial numerical decline in South Australian rabbit populations following the detection of rabbit haemorrhagic disease virus 2. Veterinary Record, 182(20), 574-574. https://doi.org/10.1136/vr.104734.
Neave, M., Hall, R., Huang, N., McColl, K., Kerr, P., Hoehn, M., Taylor, J., & Strive, T. (2018). Robust innate immunity of young rabbits mediates resistance to rabbit hemorrhagic disease caused by lagovirus europaeus GI.1 but Not GI.2. Viruses, 10(9), 512. https://doi.org/10.3390/v10090512.
Neimanis, A., Larsson Pettersson, U., Huang, N., Gavier-Widén, D., & Strive, T. (2018). Elucidation of the pathology and tissue distribution of Lagovirus europaeus GI.2/RHDV2 (rabbit haemorrhagic disease virus 2) in young and adult rabbits (Oryctolagus cuniculus). Veterinary Research, 49(1),. https://doi.org/10.1186/s13567-018-0540-z.
Nyström, K., Le Gall-Reculé, G., Grassi, P., Abrantes, J., Ruvoën-Clouet, N., Le Moullac-Vaidye, B., Lopes, A. M., Esteves, P. J., Strive, T., Marchandeau, S., Dell, A., Haslam, S. M., & Le Pendu, J. (2011). Histo-blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner. PLoS Pathogens, 7(8), e1002188. https://doi.org/10.1371/journal.ppat.1002188.
Peacock, D., Kovaliski, J., Sinclair, R., Mutze, G., Iannella, A., & Capucci, L. (2017). RHDV2 overcoming RHDV immunity in wild rabbits (Oryctolagus cuniculus) in Australia. Veterinary Record, 180(11), 280-280. https://doi.org/10.1136/vr.104135.
R Core Team (2020). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. https://www.R-project.org/.
Ramsey, D. S. L., Cox, T., Strive, T., Forsyth, D. M., Stuart, I., Hall, R., Elsworth, P., & Campbell, S. (2020). Emerging RHDV2 suppresses the impact of endemic and novel strains of RHDV on wild rabbit populations. Journal of Applied Ecology, 57(3), 630-641. https://doi.org/10.1111/1365-2664.13548.
Ratcliffe, F. N., Myers, K., Fennessy, B. V., & Calaby, J. H. (1952). Myxomatosis in Australia: A step towards the biological control of the rabbit. Nature, 170(4314), 7-11. https://doi.org/10.1038/170007a0.
Read, A. J., & Kirkland, P. D. (2017). Efficacy of a commercial vaccine against different strains of rabbit haemorrhagic disease virus. Australian Veterinary Journal, 95(7), 223-226. https://doi.org/10.1111/avj.12600.
Robinson, A. J., So, P. T. M., Müller, W. J., Cooke, B. D., & Capucci, L. (2002). Statistical models for the effect of age and maternal antibodies on the development of rabbit haemorrhagic disease in Australian wild rabbits. Wildlife Research, 29(6), 663. https://doi.org/10.1071/wr00119.
Schwensow, N., Pederson, S., Peacock, D., Cooke, B., & Cassey, P. (2020). Adaptive changes in the genomes of wild rabbits after 16 years of viral epidemics. Molecular Ecology, 29(19), 3777-3794. https://doi.org/10.1111/mec.15498.
Schwensow, N. I., Detering, H., Pederson, S., Mazzoni, C., Sinclair, R., Peacock, D., Kovaliski, J., Cooke, B., Fickel, J., & Sommer, S. (2017). Resistance to RHD virus in wild Australian rabbits: Comparison of susceptible and resistant individuals using a genomewide approach. Molecular Ecology, 26(17), 4551-4561. https://doi.org/10.1111/mec.14228.
Sharp, T., & Saunders, G. (2011). A model for assessing the relative humaneness of pest animal control methods. Canberra, Australia: Department of Agriculture, Fisheries and Forestry.
Strive, T., & Cox, T. E. (2019). Lethal biological control of rabbits - the most powerful tools for landscape-scale mitigation of rabbit impacts in Australia. Australian Zoologist, 40(1), 118-128. https://doi.org/10.7882/az.2019.016.
Strive, T., Elsworth, P., Liu, J., Wright, J. D., Kovaliski, J., & Capucci, L. (2013). The non-pathogenic Australian rabbit calicivirus RCV-A1 provides temporal and partial cross protection to lethal Rabbit Haemorrhagic Disease Virus infection which is not dependent on antibody titres. Veterinary Research, 44(1), 51. https://doi.org/10.1186/1297-9716-44-51.
Strive, T., Piper, M., Huang, N., Mourant, R., Kovaliski, J., Capucci, L., Cox, T. E., & Smith, I. (2019). Retrospective serological analysis reveals presence of the emerging lagovirus RHDV2 in Australia in wild rabbits at least five months prior to its first detection. Transboundary and Emerging Diseases, 67(2), 822-833. https://doi.org/10.1111/tbed.13403.
Taggart, P. L., Hall, R. N., Cox, T. E., Kovaliski, J., McLeod, S. R., & Strive, T. (2022). Changes in virus transmission dynamics following the emergence of RHDV2 shed light on its competitive advantage over previously circulating variants. Transboundary and Emerging Diseases, 69, 1118-1130. https://doi.org/10.1111/tbed.14071.
Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the cox model. Springer. https://doi.org/10.1002/sim.956.
فهرسة مساهمة: Keywords: Oryctolagus cuniculus; case fatality; lagovirus; rabbit biocontrol; rabbit haemorrhagic disease; survival
تواريخ الأحداث: Date Created: 20220322 Date Completed: 20220929 Latest Revision: 20220929
رمز التحديث: 20240628
DOI: 10.1111/tbed.14530
PMID: 35315981
قاعدة البيانات: MEDLINE
الوصف
تدمد:1865-1682
DOI:10.1111/tbed.14530