دورية أكاديمية

Genetic variation of macronutrient tolerance in Drosophila melanogaster.

التفاصيل البيبلوغرافية
العنوان: Genetic variation of macronutrient tolerance in Drosophila melanogaster.
المؤلفون: Havula E; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia. essi.havula@helsinki.fi.; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia. essi.havula@helsinki.fi.; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. essi.havula@helsinki.fi., Ghazanfar S; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK., Lamichane N; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.; Institute of Biotechnology, University of Helsinki, Helsinki, Finland., Francis D; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Hasygar K; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.; Institute of Biotechnology, University of Helsinki, Helsinki, Finland., Liu Y; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.; Institute of Biotechnology, University of Helsinki, Helsinki, Finland., Alton LA; School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia., Johnstone J; School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia., Needham EJ; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia., Pulpitel T; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Clark T; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Niranjan HN; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Shang V; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Tong V; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Jiwnani N; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Audia G; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia., Alves AN; School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia., Sylow L; Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.; Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark., Mirth C; School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia., Neely GG; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia., Yang J; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.; School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia., Hietakangas V; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.; Institute of Biotechnology, University of Helsinki, Helsinki, Finland., Simpson SJ; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia., Senior AM; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia. alistair.senior@sydney.edu.au.; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia. alistair.senior@sydney.edu.au.; School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, 2006, Australia. alistair.senior@sydney.edu.au.
المصدر: Nature communications [Nat Commun] 2022 Mar 28; Vol. 13 (1), pp. 1637. Date of Electronic Publication: 2022 Mar 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Drosophila Proteins*/genetics , Drosophila Proteins*/metabolism , Drosophila melanogaster*/metabolism, Animals ; DNA-Binding Proteins/metabolism ; Genetic Variation ; Nutrients ; Sugars/metabolism ; Transcription Factors/metabolism
مستخلص: Carbohydrates, proteins and lipids are essential nutrients to all animals; however, closely related species, populations, and individuals can display dramatic variation in diet. Here we explore the variation in macronutrient tolerance in Drosophila melanogaster using the Drosophila genetic reference panel, a collection of ~200 strains derived from a single natural population. Our study demonstrates that D. melanogaster, often considered a "dietary generalist", displays marked genetic variation in survival on different diets, notably on high-sugar diet. Our genetic analysis and functional validation identify several regulators of macronutrient tolerance, including CG10960/GLUT8, Pkn and Eip75B. We also demonstrate a role for the JNK pathway in sugar tolerance and de novo lipogenesis. Finally, we report a role for tailless, a conserved orphan nuclear hormone receptor, in regulating sugar metabolism via insulin-like peptide secretion and sugar-responsive CCHamide-2 expression. Our study provides support for the use of nutrigenomics in the development of personalized nutrition.
(© 2022. The Author(s).)
References: Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015). (PMID: 25592535431334910.1038/nature14190)
Havula, E. & Hietakangas, V. Sugar sensing by ChREBP/Mondo-Mlx-new insight into downstream regulatory networks and integration of nutrient-derived signals. Curr. Opin. Cell Biol. 51, 89–96 (2018). (PMID: 2927883410.1016/j.ceb.2017.12.007)
Mattila, J. et al. Mondo-Mlx mediates organismal sugar sensing through the Gli-similar transcription factor sugarbabe. Cell Rep. 13, 350–364 (2015). (PMID: 2644088510.1016/j.celrep.2015.08.081)
Bartok, O. et al. The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing. EMBO J. 34, 1538–1553 (2015). (PMID: 25916830447452910.15252/embj.201591385)
Havula, E. & Hietakangas, V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2012.02.007 (2012).
Chawla, A., Repa, J. J., Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors and lipid physiology: Opening the X-files. Science 294, 1866–1870 (2001). (PMID: 1172930210.1126/science.294.5548.1866)
Vacca, M., Degirolamo, C., Mariani-Costantini, R., Palasciano, G. & Moschetta, A. Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 562–587 (2011). (PMID: 2175560510.1002/wsbm.137)
Knowler, W. C., Bennett, P. H., Hamman, R. F. & Miller, M. Diabetes incidence and prevalence in Pima Indians: A 19-fold greater incidence than in Rochester, Minnesota. Am. J. Epidemiol. 108, 497–505 (1978). (PMID: 73602810.1093/oxfordjournals.aje.a112648)
Moltke, I. et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512, 190–193 (2014). (PMID: 2504302210.1038/nature13425)
Minster, R. L. et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat. Genet. 48, 1049–1054 (2016). (PMID: 27455349506906910.1038/ng.3620)
Consortium, S. T. D. et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101 (2014). (PMID: 10.1038/nature12828)
Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015). (PMID: 2638395310.1126/science.aab2319)
Chen, Y. et al. The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: The GLACIER study. Int J. Obes. 43, 808–820 (2019). (PMID: 10.1038/s41366-018-0112-3)
Nakamura, S. et al. Gene-environment interactions in obesity: Implication for future applications in preventive medicine. J. Hum. Genet. 61, 317–322 (2016). (PMID: 2665793410.1038/jhg.2015.148)
Cordain, L. et al. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005). (PMID: 1569922010.1093/ajcn.81.2.341)
Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15, 34–48 (2014). (PMID: 2429653410.1038/nrg3575)
Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. & Feinglos, M. N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163–1167 (1988). (PMID: 304488210.2337/diab.37.9.1163)
Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model Mech. 4, 842–849 (2011). (PMID: 21719444320965310.1242/dmm.007948)
Teleman, A. A. Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem. J. 425, 13–26 (2010). (PMID: 10.1042/BJ20091181)
Mackay, T. F. et al. The Drosophila melanogaster genetic reference panel. Nature 482, 173–178 (2012). (PMID: 22318601368399010.1038/nature10811)
Mirth, C., Truman, J. W. & Riddiford, L. M. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr. Biol. 15, 1796–1807 (2005). (PMID: 1618252710.1016/j.cub.2005.09.017)
Musselman, L. P. & Kuhnlein, R. P. Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol. https://doi.org/10.1242/jeb.163881 (2018).
Tennessen, J. M. et al. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda) 4, 839–850 (2014). (PMID: 10.1534/g3.114.010652)
Barry, W. E. & Thummel, C. S. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. Elife https://doi.org/10.7554/eLife.11183 (2016).
Liao, S. et al. Regulatory roles of Drosophila insulin-like peptide 1 (DILP1) in metabolism differ in pupal and adult stages. Front. Endocrinol. 11, 180 (2020). (PMID: 10.3389/fendo.2020.00180)
DeBosch, B. J., Chen, Z., Finck, B. N., Chi, M. & Moley, K. H. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice. Mol. Endocrinol. 27, 1887–1896 (2013). (PMID: 24030250380584710.1210/me.2013-1137)
Havula, E. et al. Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in drosophila. PLoS Genet. 9, e1003438 (2013). (PMID: 23593032361691010.1371/journal.pgen.1003438)
Zeke, A., Misheva, M., Remenyi, A. & Bogoyevitch, M. A. JNK signaling: Regulation and functions based on complex protein–protein partnerships. Microbiol Mol. Biol. Rev. 80, 793–835 (2016). (PMID: 27466283498167610.1128/MMBR.00043-14)
Weston, C. R. & Davis, R. J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142–149 (2007). (PMID: 1730340410.1016/j.ceb.2007.02.001)
Chittaranjan, S. et al. The Drosophila TIPE family member Sigmar interacts with the Ste20-like kinase Misshapen and modulates JNK signaling, cytoskeletal remodeling and autophagy. Biol. Open 4, 672–684 (2015). (PMID: 25836674443481910.1242/bio.20148417)
Hakes, A. E. & Brand, A. H. Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of asense/ASCL1. Elife https://doi.org/10.7554/eLife.53377 (2020).
Pignoni, F. et al. The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62, 151–163 (1990). (PMID: 236443310.1016/0092-8674(90)90249-E)
Kurusu, M. et al. A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain. Dev. Biol. 326, 224–236 (2009). (PMID: 1908451410.1016/j.ydbio.2008.11.013)
Young, K. A. et al. Fierce: A new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent. Behav. Brain Res. 132, 145–158 (2002). (PMID: 11997145286290710.1016/S0166-4328(01)00413-2)
Gronke, S., Clarke, D. F., Broughton, S., Andrews, T. D. & Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010). (PMID: 20195512282906010.1371/journal.pgen.1000857)
Geminard, C., Rulifson, E. J. & Leopold, P. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab. 10, 199–207 (2009). (PMID: 1972349610.1016/j.cmet.2009.08.002)
Hasygar, K. & Hietakangas, V. p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion. PLoS Genet. 10, e1004764 (2014). (PMID: 25393288423083810.1371/journal.pgen.1004764)
Sano, H. et al. The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of drosophila melanogaster. PLoS Genet. 11, e1005209 (2015). (PMID: 26020940444735510.1371/journal.pgen.1005209)
Xiong, Q. et al. Nr2e1 ablation impairs liver glucolipid metabolism and induces inflammation, high-fat diets amplify the damage. Biomed. Pharmacother. 120, 109503 (2019). (PMID: 3159012710.1016/j.biopha.2019.109503)
Shi, X. et al. Nr2e1 deficiency augments palmitate-induced oxidative stress in beta cells. Oxid. Med. Cell Longev. 2016, 9648769 (2016). (PMID: 2664914710.1155/2016/9648769)
Sun, L. et al. The relationship between NR2E1 and subclinical inflammation in newly diagnosed type 2 diabetic patients. J. Diabetes Complications 29, 589–594 (2015). (PMID: 2581367410.1016/j.jdiacomp.2014.12.018)
Iwahara, N., Hisahara, S., Hayashi, T. & Horio, Y. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX. Biochem. Biophys. Res. Commun. 386, 671–675 (2009). (PMID: 1955566210.1016/j.bbrc.2009.06.103)
Wu, D. et al. Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21(WAF1) (/) (CIP1)) and SIRT1 genes. J. Pathol. 236, 103–115 (2015). (PMID: 2555735510.1002/path.4505)
Boutant, M. & Canto, C. SIRT1 metabolic actions: Integrating recent advances from mouse models. Mol. Metab. 3, 5–18 (2014). (PMID: 2456790010.1016/j.molmet.2013.10.006)
Palu, R. A. & Thummel, C. S. Sir2 acts through hepatocyte nuclear factor 4 to maintain insulin signaling and metabolic homeostasis in drosophila. PLoS Genet. 12, e1005978 (2016). (PMID: 27058248482595510.1371/journal.pgen.1005978)
Ohki-Hamazaki, H. et al. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature 390, 165–169 (1997). (PMID: 936715210.1038/36568)
Feng, Y. et al. Bombesin receptor subtype-3 (BRS-3) regulates glucose-stimulated insulin secretion in pancreatic islets across multiple species. Endocrinology 152, 4106–4115 (2011). (PMID: 2187851310.1210/en.2011-1440)
Mayer, A. L. et al. Enhanced hepatic PPARalpha activity links GLUT8 deficiency to augmented peripheral fasting responses in male mice. Endocrinology 159, 2110–2126 (2018). (PMID: 29596655636653310.1210/en.2017-03150)
Agrimi, G. et al. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochem. J. 379, 183–190 (2004). (PMID: 14674884122404210.1042/bj20031664)
Kishita, Y. et al. Intra-mitochondrial methylation deficiency due to mutations in SLC25A26. Am. J. Hum. Genet. 97, 761–768 (2015). (PMID: 26522469466713010.1016/j.ajhg.2015.09.013)
Lu, Y. & Settleman, J. The Drosophila Pkn protein kinase is a Rho/Rac effector target required for dorsal closure during embryogenesis. Genes Dev. 13, 1168–1180 (1999). (PMID: 1032386731693810.1101/gad.13.9.1168)
Ruby, M. A., Riedl, I., Massart, J., Ahlin, M. & Zierath, J. R. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 313, E483–E491 (2017). (PMID: 28720584566859410.1152/ajpendo.00147.2017)
Bialecki, M., Shilton, A., Fichtenberg, C., Segraves, W. A. & Thummel, C. S. Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Dev. Cell 3, 209–220 (2002). (PMID: 1219485210.1016/S1534-5807(02)00204-6)
Joardar, A. et al. PPAR gamma activation is neuroprotective in a Drosophila model of ALS based on TDP-43. Hum. Mol. Genet. 24, 1741–1754 (2015). (PMID: 2543253710.1093/hmg/ddu587)
Pasco, M. Y. & Leopold, P. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS One 7, e36583 (2012). (PMID: 22567167334223410.1371/journal.pone.0036583)
Agrawal, N. et al. The Drosophila TNF Eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab. 23, 675–684 (2016). (PMID: 2707607910.1016/j.cmet.2016.03.003)
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002). (PMID: 1244744310.1038/nature01137)
Samuel, V. T., Petersen, K. F. & Shulman, G. I. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet 375, 2267–2277 (2010). (PMID: 20609972299554710.1016/S0140-6736(10)60408-4)
Skorupa, D. A., Dervisefendic, A., Zwiener, J. & Pletcher, S. D. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7, 478–490 (2008). (PMID: 1848512510.1111/j.1474-9726.2008.00400.x)
Na, J. et al. A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet. 9, e1003175 (2013). (PMID: 23326243354207010.1371/journal.pgen.1003175)
Morris, S. N. et al. Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim. Biophys. Acta 1822, 1230–1237 (2012). (PMID: 22542511360183310.1016/j.bbadis.2012.04.012)
Woodcock, K. J. et al. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42, 133–144 (2015). (PMID: 25601202430472010.1016/j.immuni.2014.12.023)
Diop, S. B. et al. PGC-1/Spargel counteracts high-fat-diet-induced obesity and cardiac lipotoxicity downstream of TOR and brummer ATGL lipase. Cell Rep. 10, 1572–1584 (2015). (PMID: 25753422456068810.1016/j.celrep.2015.02.022)
Birse, R. T. et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 12, 533–544 (2010). (PMID: 21035763302664010.1016/j.cmet.2010.09.014)
Heinrichsen, E. T. et al. Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Mol. Metab. 3, 42–54 (2014). (PMID: 2456790310.1016/j.molmet.2013.10.003)
Hong, S. H., Kang, M., Lee, K. S. & Yu, K. High fat diet-induced TGF-beta/Gbb signaling provokes insulin resistance through the tribbles expression. Sci. Rep. 6, 30265 (2016). (PMID: 27484164497149710.1038/srep30265)
Cormier, R. P. J., Champigny, C. M., Simard, C. J., St-Coeur, P. D. & Pichaud, N. Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster. Sci. Rep. 9, 4531 (2019). (PMID: 30872605641825910.1038/s41598-018-36060-5)
Reed, L. K. et al. Systems genomics of metabolic phenotypes in wild-type Drosophila melanogaster. Genetics 197, 781–793 (2014). (PMID: 24671769406393210.1534/genetics.114.163857)
Kayashima, Y. et al. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem. Biophys. Rep. 4, 417–424 (2015). (PMID: 291242335669444)
Rendina-Ruedy, E. & Smith, B. J. Methodological considerations when studying the skeletal response to glucose intolerance using the diet-induced obesity model. Bonekey Rep. 5, 845 (2016). (PMID: 27818742508100110.1038/bonekey.2016.71)
Sieber, M. H. & Thummel, C. S. Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab. 15, 122–127 (2012). (PMID: 2219732410.1016/j.cmet.2011.11.011)
Surwit, R. S. et al. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44, 645–651 (1995). (PMID: 775291410.1016/0026-0495(95)90123-X)
Toye, A. A. et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48, 675–686 (2005). (PMID: 1572957110.1007/s00125-005-1680-z)
Collins, S., Martin, T. L., Surwit, R. S. & Robidoux, J. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol. Behav. 81, 243–248 (2004). (PMID: 1515917010.1016/j.physbeh.2004.02.006)
Surwit, R. S., Seldin, M. F., Kuhn, C. M., Cochrane, C. & Feinglos, M. N. Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice. Diabetes 40, 82–87 (1991). (PMID: 201597710.2337/diab.40.1.82)
Montgomery, M. K. et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56, 1129–1139 (2013). (PMID: 2342366810.1007/s00125-013-2846-8)
Zhang, W., Thompson, B. J., Hietakangas, V. & Cohen, S. M. MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genet. 7, e1002429 (2011). (PMID: 22242005324846910.1371/journal.pgen.1002429)
Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods 68, 105–115 (2014). (PMID: 24631891404876110.1016/j.ymeth.2014.02.034)
Bader, R. et al. The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain. J. Cell Sci. 126, 2571–2576 (2013). (PMID: 23591813)
Layalle, S., Arquier, N. & Leopold, P. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 15, 568–577 (2008). (PMID: 1885414110.1016/j.devcel.2008.08.003)
Alton, L. A. et al. Developmental nutrition modulates metabolic responses to projected climate change. Funct. Ecol. 34, 2488–2502 (2020). (PMID: 10.1111/1365-2435.13663)
Henry, Y., Overgaard, J. & Colinet, H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 241, 110626 (2020). (PMID: 3179080510.1016/j.cbpa.2019.110626)
Brouwer, E. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (Oxygen intake and carbonic acid output) and urine-N. Acta Physiol. Pharm. Neerl. 6, 795–802 (1957).
King, J. R. Comments on the theory of indirect calorimetry as applied to birds. Northwest Sci. 31, 155–169 (1957).
Havula, E. et al. Genetic variation of macronutrient tolerance in Drosophila melanogaster. AlistairMcNairSenior/DGRP_Diet_Pupation. https://doi.org/10.5281/zenodo.5895053 (2022).
Larkin, A. et al. FlyBase: Updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res. 49, D899–D907 (2021). (PMID: 3321968210.1093/nar/gkaa1026)
المشرفين على المادة: 0 (DNA-Binding Proteins)
0 (Drosophila Proteins)
0 (Sugars)
0 (Transcription Factors)
126968-14-7 (Eip75B protein, Drosophila)
تواريخ الأحداث: Date Created: 20220329 Date Completed: 20220413 Latest Revision: 20221021
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8960806
DOI: 10.1038/s41467-022-29183-x
PMID: 35347148
قاعدة البيانات: MEDLINE