دورية أكاديمية

In Vivo Visualization of Mobile mRNA Particles in Plants Using BglG.

التفاصيل البيبلوغرافية
العنوان: In Vivo Visualization of Mobile mRNA Particles in Plants Using BglG.
المؤلفون: Peña EJ; Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas-UNLP, CONICET, La Plata, Argentina., Heinlein M; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France. manfred.heinlein@ibmp-cnrs.unistra.fr.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2457, pp. 411-426.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Escherichia coli*/genetics , Plant Viral Movement Proteins*/metabolism, RNA, Messenger/genetics ; RNA, Messenger/metabolism ; RNA, Viral/genetics ; RNA, Viral/metabolism ; Nicotiana/metabolism
مستخلص: Cells have developed mechanisms for cytoplasmic RNA transport and localization that participate in the regulation and subcellular localization of protein synthesis. In addition, plants can exchange RNA molecules between cells through plasmodesmata and to distant tissues in the phloem. These mechanisms are hijacked by RNA viruses to establish their replication complexes and to disseminate their genomes throughout the plant organism with the help of virus-encoded movement proteins (MP). Live imaging of RNA molecules is a fundamental approach to understand the regulation and molecular basis of these processes. The most widely used experimental systems for the in vivo visualization of genetically encoded RNA molecules are based on fluorescently tagged RNA binding proteins that bind to specific motifs inserted into the RNA, thus allowing the tracking of the specific RNA molecule by fluorescent microscopy. Recently, we developed the use of the E. coli RNA binding protein BglG for the imaging of RNAs tagged with BglG-binding sites in planta. We describe here the detailed method by which we use this in vivo RNA tagging system for the real-time imaging of Tobacco mosaic virus (TMV) MP mRNA.
(© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: St Johnston D (1995) The intracellular localization of messenger RNAs. Cell 81:161–170. (PMID: 7736568)
Das S, Vera M, Gandin V, Singer RH, Tutucci E (2021) Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 7:483–504.
Eliscovich C, Singer RH (2017) RNP transport in cell biology: the long and winding road. Curr Opin Cell Biol 45:38–46. (PMID: 28258033)
Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O (2011) Translation-independent localization of mRNA in E. coli. Science 331:1081–1084. (PMID: 21350180)
Kannaiah S, Livny J, Amster-Choder O (2019) Spatiotemporal organization of the E. coli transcriptome: translation independence and engagement in regulation. Mol Cell 76:574–589.e7. (PMID: 31540875)
Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187. (PMID: 17923096)
Das S, Singer RH, Yoon YJ (2019) The travels of mRNAs in neurons: do they know where they are going? Curr Opin Neurobiol 57:110–116. (PMID: 30784978)
Buxbaum AR, Haimovich G, Singer RH (2015) In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 16:95–109. (PMID: 25549890)
Eliscovich C, Buxbaum AR, Katz ZB, Singer RH (2013) mRNA on the move: the road to its biological destiny. J Biol Chem 288:20361–20368. (PMID: 23720759)
Katz ZB, Wells AL, Park HY, Wu B, Shenoy SM, Singer RH (2012) β-actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev 26:1885–1890. (PMID: 229486603435492)
Bovaird S, Patel D, Padilla JA, Lécuyer E (2018) Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 592:2948–2972. (PMID: 30132838)
Wang ET, Taliaferro JM, Lee JA, Sudhakaran IP, Rossoll W, Gross C, Moss KR, Bassell GJ (2016) Dysregulation of mRNA localization and translation in genetic disease. J Neurosci 36:11418–11426. (PMID: 279117445125209)
Tian L, Chou HL, Fukuda M, Kumamaru T, Okita TW (2020) mRNA localization in plant cells. Plant Physiol 182:97–109. (PMID: 31611420)
Ham B-K, Lucas WJ (2017) Phloem-mobile RNAs as systemic signaling agents. Annu Rev Plant Biol 68:173–195. (PMID: 28125282)
Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minãmbres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR, Kragler F (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1:1–8.
Zhang Z, Zheng Y, Ham B-K, Chen J, Yoshida A, Kochian LV, Fei Z, Lucas WJ (2016) Vascular-mediated signalling involved in early phosphate stress response in plants. Nat Plants 2:16033. (PMID: 27249565)
Yang Y, Mao L, Jittayasothorn Y, Kang Y, Jiao C, Fei Z (2015) Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biol 15:251. (PMID: 26480945)
Heinlein M (2015) Plasmodesmata: channels for viruses on the move. Methods Mol Biol 1217:25–52. (PMID: 25287194)
Peña EJ, Heinlein M (2012) RNA transport during TMV cell-to-cell movement. Front Plant Sci 3:1–10.
Heinlein M (2015) Plant virus replication and movement. Virology 479–480:657–671. (PMID: 25746797)
Scholthof K-BG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954. (PMID: 66404236640423)
Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of Tobacco mosaic virus potentiates virus movement. Science 237:389–394. (PMID: 17794341)
Citovsky V (1999) Tobacco mosaic virus: a pioneer of cell-to-cell movement. Philos Trans R Soc Lond Ser B Biol Sci 354:637–643.
Goelet P, Lomonossoff GP, Butler PJ, Akam ME, Gait MJ, Karn J (1982) Nucleotide sequence of Tobacco mosaic virus RNA. Proc Natl Acad Sci U S A 79:5818–5822. (PMID: 6964389347001)
Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant Tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117. (PMID: 1994570)
Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985. (PMID: 8533089)
Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120. (PMID: 9668131144046)
Amari K, Di Donato M, Dolja VV, Heinlein M (2014) Myosins VIII and XI play distinct roles in reproduction and transport of Tobacco mosaic virus. PLoS Pathog 10:e1004448. (PMID: 253299934199776)
Peiro A, Martinez-Gil L, Tamborero S, Pallas V, Sanchez-Navarro JA, Mingarro I, Simon A (2014) The Tobacco mosaic virus movement protein associates with but does not integrate into biological membranes. J Virol 88:3016–3026. (PMID: 243710643958068)
Ashby J, Boutant E, Seemanpillai M, Sambade A, Ritzenthaler C, Heinlein M (2006) Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80:8329–8344. (PMID: 16912284)
Peña EJ, Heinlein M (2013) Cortical microtubule-associated ER sites: organization centers of cell polarity and communication. Curr Opin Plant Biol 16:764–773. (PMID: 24269577)
Boyko V, Hu Q, Seemanpillai M, Ashby J, Heinlein M (2007) Validation of microtubule-associated Tobacco mosaic virus RNA movement and involvement of microtubule-aligned particle trafficking. Plant J 51:589–603. (PMID: 17584190)
Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlein M (2002) Intramolecular complementing mutations in Tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 76:3974–3980. (PMID: 11907237)
Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon MO, Heinlein M (2000) Cellular targets of functional and dysfunctional mutants of Tobacco mosaic virus movement protein fused to green fluorescent protein. J Virol 74:11339–11346. (PMID: 11070034)
Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826–832. (PMID: 11056538)
Ouko MO, Sambade A, Brandner K, Niehl A, Peña E, Ahad A, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J 62:829–839. (PMID: 20230489)
Niehl A, Amari K, Gereige D, Brandner K, Mely Y, Heinlein M (2012) Control of Tobacco mosaic virus movement protein fate by CELL-DIVISION-CYCLE protein48. Plant Physiol 160:2093–2108. (PMID: 23027663)
Curin M, Ojangu E-L, Trutnyeva K, Ilau B, Truve E, Waigmann E (2006) MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of Tobacco mosaic virus movement protein in plants. Plant Physiol 143:801–811. (PMID: 17189338)
Niehl A, Peña EJ, Amari K, Heinlein M (2013) Microtubules in viral replication and transport. Plant J 75:290–308. (PMID: 23379770)
Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101:6291–6296. (PMID: 15079061)
Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M (2008) Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9:2073–2088. (PMID: 19281527)
Ferralli J, Ashby J, Fasler M, Boyko V, Heinlein M (2006) Disruption of microtubule organization and centrosome function by expression of Tobacco mosaic virus movement protein. J Virol 80:5807–5821. (PMID: 16731920)
Boutant E, Didier P, Niehl A, Mély Y, Ritzenthaler C, Heinlein M (2010) Fluorescent protein recruitment assay for demonstration and analysis of in vivo protein interactions in plant cells and its application to Tobacco mosaic virus movement protein. Plant J 62:171–177. (PMID: 20070568)
Jeffery WR, Tomlinson CR, Brodeur RD (1983) Localization of actin messenger RNA during early ascidian development. Dev Biol 99:408–417. (PMID: 6194032)
Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. Science 280:585–590. (PMID: 9554849)
Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X (2016) Spatial organization shapes the turnover of a bacterial transcriptome. elife 5:e13065. (PMID: 27198188)
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. (PMID: 18806792)
Sokol DL, Zhang X, Lu P, Gewirtz AM (1998) Real time detection of DNA·RNA hybridization in living cells. Proc Natl Acad Sci U S A 95:11538–11543. (PMID: 9751701)
Adamala KP, Martin-Alarcon DA, Boyden ES (2016) Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A 113:2579–2588.
Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496. (PMID: 269974824826288)
Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646. (PMID: 217989533314379)
Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125:14716–14717. (PMID: 14640641)
Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445. (PMID: 9809065)
Daigle N, Ellenberg J (2007) λN-GFP: an RNA reporter system for live-cell imaging. Nat Methods 4:633–636. (PMID: 17603490)
Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, Coffin JM, Ni N, Lockett S, Pathak VK, Hu W-S (2009) High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci U S A 106:13535–13540. (PMID: 196286942714765)
Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:475–478. (PMID: 215120333152976)
Ryckelynck M (2020) Development and applications of fluorogen/light-up RNA aptamer pairs for RNA detection and more. Methods Mol Biol 2166:73–102.
Pichon X, Robert MC, Bertrand E, Singer RH, Tutucci E (2020) New generations of MS2 variants and MCP fusions to detect single mRNAs in living eukaryotic cells. Methods Mol Biol 2166:121–144.
Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of Tobacco mosaic virus single-strand nucleic acid binding protein. Cell 60:637–647. (PMID: 2302736)
Peña E, Heinlein M, Sambade A (2015) In vivo RNA labeling using MS2. Methods Mol Biol 1217:329–341. (PMID: 25287213)
Peña EJ, Heinlein M (2020) Visualization of transiently expressed mRNA in plants using MS2. Methods Mol Biol 2166:103–120. (PMID: 32710405)
Peña EJ, Robles Luna G, Heinlein M (2021) In vivo imaging of tagged mRNA in plant tissues using the bacterial transcriptional antiterminator BglG. Plant J 105:271–282. (PMID: 33098198)
Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469. (PMID: 14555774523872)
Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108.
Buschmann H, Green P, Sambade A, Doonan JH, Lloyd CW (2011) Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells. New Phytol 190:258–267. (PMID: 21182528)
Rademacher T, Sack M, Blessing D, Fischer R, Holland T, Buyel J (2019) Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnol J 17:1560–1566. (PMID: 306720786662111)
Silhavy D, Molnár A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyán J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21:3070–3080. (PMID: 12065420125389)
فهرسة مساهمة: Keywords: BglG; Movement protein (MP); RNA imaging; RNA labeling; RNA localization; RNA transport; RNA visualization; Tobacco mosaic virus (TMV)
المشرفين على المادة: 0 (Plant Viral Movement Proteins)
0 (RNA, Messenger)
0 (RNA, Viral)
تواريخ الأحداث: Date Created: 20220329 Date Completed: 20220401 Latest Revision: 20231213
رمز التحديث: 20231215
DOI: 10.1007/978-1-0716-2132-5_28
PMID: 35349157
قاعدة البيانات: MEDLINE