دورية أكاديمية

Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle.

التفاصيل البيبلوغرافية
العنوان: Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle.
المؤلفون: McNally BD; Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK., Ashley DF; Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK., Hänschke L; Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, 53115, Bonn, Germany., Daou HN; School of Medicine, University of Leeds, Leeds, LS2 9JT, UK., Watt NT; School of Medicine, University of Leeds, Leeds, LS2 9JT, UK., Murfitt SA; Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK., MacCannell ADV; School of Medicine, University of Leeds, Leeds, LS2 9JT, UK., Whitehead A; School of Medicine, University of Leeds, Leeds, LS2 9JT, UK., Bowen TS; Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK., Sanders FWB; Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK., Vacca M; Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.; Clinica Medica 'Frugoni', Interdisciplinar Department of Medicine, University of Bari 'Aldo Moro', Bari, Italy., Witte KK; School of Medicine, University of Leeds, Leeds, LS2 9JT, UK., Davies GR; Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK., Bauer R; Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Carl-Troll-Straße, 31, 53115, Bonn, Germany., Griffin JL; Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK., Roberts LD; School of Medicine, University of Leeds, Leeds, LS2 9JT, UK. L.D.Roberts@leeds.ac.uk.
المصدر: Nature communications [Nat Commun] 2022 Apr 01; Vol. 13 (1), pp. 1748. Date of Electronic Publication: 2022 Apr 01.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Ceramides*/metabolism , Endoplasmic Reticulum Stress*/physiology, Animals ; Endoplasmic Reticulum/metabolism ; Mice ; Muscle, Skeletal/metabolism ; Unfolded Protein Response
مستخلص: The endoplasmic reticulum (ER) regulates cellular protein and lipid biosynthesis. ER dysfunction leads to protein misfolding and the unfolded protein response (UPR), which limits protein synthesis to prevent cytotoxicity. Chronic ER stress in skeletal muscle is a unifying mechanism linking lipotoxicity to metabolic disease. Unidentified signals from cells undergoing ER stress propagate paracrine and systemic UPR activation. Here, we induce ER stress and lipotoxicity in myotubes. We observe ER stress-inducing lipid cell non-autonomous signal(s). Lipidomics identifies that palmitate-induced cell stress induces long-chain ceramide 40:1 and 42:1 secretion. Ceramide synthesis through the ceramide synthase 2 de novo pathway is regulated by UPR kinase Perk. Inactivation of CerS2 in mice reduces systemic and muscle ceramide signals and muscle UPR activation. The ceramides are packaged into extracellular vesicles, secreted and induce UPR activation in naïve myotubes through dihydroceramide accumulation. This study furthers our understanding of ER stress by identifying UPR-inducing cell non-autonomous signals.
(© 2022. The Author(s).)
References: Oakes, S. A. & Papa, F. R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 10, 173–194 (2015). (PMID: 2538705710.1146/annurev-pathol-012513-104649)
Boden, G. et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57, 2438–2444 (2008). (PMID: 18567819251849510.2337/db08-0604)
Palomer, X., Pizarro-Delgado, J., Barroso, E. & Vazquez-Carrera, M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol. Metab. 29, 178–190 (2018). (PMID: 2929050010.1016/j.tem.2017.11.009)
Unger, R. H., Clark, G. O., Scherer, P. E. & Orci, L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta 1801, 209–214 (2010). (PMID: 1994824310.1016/j.bbalip.2009.10.006)
Sears, B. & Perry, M. The role of fatty acids in insulin resistance. Lipids Health Dis. 14, 121 (2015). (PMID: 26415887458788210.1186/s12944-015-0123-1)
Ertunc, M. E. & Hotamisligil, G. S. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res. 57, 2099–2114 (2016). (PMID: 27330055532121410.1194/jlr.R066514)
Baskin, K. K., Winders, B. R. & Olson, E. N. Muscle as a “mediator” of systemic metabolism. Cell Metab. 21, 237–248 (2015). (PMID: 25651178439802610.1016/j.cmet.2014.12.021)
Han, J. & Kaufman, R. J. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 57, 1329–1338 (2016). (PMID: 27146479495987410.1194/jlr.R067595)
Peter, A. et al. Individual stearoyl-coa desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo. Diabetes 58, 1757–1765 (2009). (PMID: 19478146271279210.2337/db09-0188)
Deldicque, L. et al. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am. J. Physiol. Endocrinol. Metab. 299, E695–E705 (2010). (PMID: 2050187410.1152/ajpendo.00038.2010)
Kars, M. et al. Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010). (PMID: 20522594291105310.2337/db10-0308)
Salvado, L. et al. Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 56, 1372–1382 (2013). (PMID: 2346002110.1007/s00125-013-2867-3)
Salvado, L. et al. PPARbeta/delta prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 57, 2126–2135 (2014). (PMID: 2506327310.1007/s00125-014-3331-8)
Hetz, C. & Papa, F. R. The unfolded protein response and cell fate control. Mol. Cell 69, 169–181 (2018). (PMID: 2910753610.1016/j.molcel.2017.06.017)
Mahadevan, N. R. et al. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc. Natl Acad. Sci. USA 108, 6561–6566 (2011). (PMID: 21464300308103810.1073/pnas.1008942108)
Schinzel, R. & Dillin, A. Endocrine aspects of organelle stress-cell non-autonomous signaling of mitochondria and the ER. Curr. Opin. Cell Biol. 33, 102–110 (2015). (PMID: 2567768510.1016/j.ceb.2015.01.006)
Psychogios, N. et al. The human serum metabolome. PLoS ONE 6, e16957 (2011). (PMID: 21359215304019310.1371/journal.pone.0016957)
Lopes, S. M., Trimbo, S. L., Mascioli, E. A. & Blackburn, G. L. Human plasma fatty acid variations and how they are related to dietary intake. Am. J. Clin. Nutr. 53, 628–637 (1991). (PMID: 200081510.1093/ajcn/53.3.628)
Takahashi, H. et al. Long-chain free fatty acid profiling analysis by liquid chromatography-mass spectrometry in mouse treated with peroxisome proliferator-activated receptor alpha agonist. Biosci. Biotechnol. Biochem. 77, 2288–2293 (2013). (PMID: 2420080410.1271/bbb.130572)
Eguchi, K. et al. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab. 15, 518–533 (2012). (PMID: 2246507310.1016/j.cmet.2012.01.023)
Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009). (PMID: 1895302410.1093/nar/gkn810)
Quehenberger, O. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299–3305 (2010). (PMID: 20671299295257010.1194/jlr.M009449)
Basit, A., Piomelli, D. & Armirotti, A. Rapid evaluation of 25 key sphingolipids and phosphosphingolipids in human plasma by LC-MS/MS. Anal. Bioanal. Chem. 407, 5189–5198 (2015). (PMID: 25749796447139110.1007/s00216-015-8585-6)
Kasumov, T. et al. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910 (2015). (PMID: 25993337443906010.1371/journal.pone.0126910)
Xu, F. et al. COPII mitigates ER stress by promoting formation of ER whorls. Cell Res. 31, 141–156 (2021). (PMID: 3298922310.1038/s41422-020-00416-2)
Levy, M. & Futerman, A. H. Mammalian ceramide synthases. IUBMB Life 62, 347–356 (2010). (PMID: 202220152858252)
Laviad, E. L. et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 283, 5677–5684 (2008). (PMID: 1816523310.1074/jbc.M707386200)
Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H. Jr. & Futerman, A. H. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459 (2003). (PMID: 1291298310.1074/jbc.M307104200)
Bickert, A. et al. Inactivation of ceramide synthase 2 catalytic activity in mice affects transcription of genes involved in lipid metabolism and cell division. Biochim Biophys. Acta Mol. Cell Biol. Lipids 1863, 734–749 (2018). (PMID: 2965325210.1016/j.bbalip.2018.04.006)
van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018). (PMID: 2933979810.1038/nrm.2017.125)
Boilard, E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J. Lipid Res. 59, 2037–2046 (2018). (PMID: 29678959621091110.1194/jlr.R084640)
Skotland, T., Sagini, K., Sandvig, K. & Llorente, A. An emerging focus on lipids in extracellular vesicles. Adv. Drug Deliv. Rev. 159, 308–321 (2020). (PMID: 3215165810.1016/j.addr.2020.03.002)
Burrello, J. et al. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci. Rep. 10, 16182 (2020). (PMID: 32999414752745610.1038/s41598-020-73411-7)
Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018). (PMID: 30637094632235210.1080/20013078.2018.1535750)
Gagliostro, V. et al. Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. Int. J. Biochem. Cell Biol. 44, 2135–2143 (2012). (PMID: 2296015710.1016/j.biocel.2012.08.025)
Tidhar, R. & Futerman, A. H. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys. Acta 1833, 2511–2518 (2013). (PMID: 2361179010.1016/j.bbamcr.2013.04.010)
Summers, S. A. Could ceramides become the new cholesterol? Cell Metab. 27, 276–280 (2018). (PMID: 2930751710.1016/j.cmet.2017.12.003)
Wigger, L. et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 18, 2269–2279 (2017). (PMID: 2824917010.1016/j.celrep.2017.02.019)
Luukkonen, P. K. et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016). (PMID: 2678028710.1016/j.jhep.2016.01.002)
Lemaitre, R. N. et al. Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: the strong heart family study. Diabetes 67, 1663–1672 (2018). (PMID: 29588286605443610.2337/db17-1449)
Laaksonen, R. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 37, 1967–1976 (2016). (PMID: 27125947492937810.1093/eurheartj/ehw148)
Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019). (PMID: 31273070678791810.1126/science.aav3722)
Boslem, E. et al. A lipidomic screen of palmitate-treated MIN6 beta-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J. 435, 267–276 (2011). (PMID: 2126573710.1042/BJ20101867)
Choi, S. et al. Myristate-induced endoplasmic reticulum stress requires ceramide synthases 5/6 and generation of C14-ceramide in intestinal epithelial cells. FASEB J. 32, 5724–5736 (2018). (PMID: 29768040613370210.1096/fj.201800141R)
Contreras, C. et al. Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014). (PMID: 25284795515716010.1016/j.celrep.2014.08.057)
Boon, J. et al. Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62, 401–410 (2013). (PMID: 23139352355435110.2337/db12-0686)
Straczkowski, M. et al. Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53, 1215–1221 (2004). (PMID: 1511148910.2337/diabetes.53.5.1215)
Adams, J. M. 2nd et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25–31 (2004). (PMID: 1469369410.2337/diabetes.53.1.25)
Turpin-Nolan, S. M. et al. CerS1-derived C18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep. 26, 1–10 e17 (2019). (PMID: 3060566610.1016/j.celrep.2018.12.031)
Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008). (PMID: 1830908310.1126/science.1153124)
Whitham, M. et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 27, 237–251 e234 (2018). (PMID: 2932070410.1016/j.cmet.2017.12.001)
Mullen, T. D., Hannun, Y. A. & Obeid, L. M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 441, 789–802 (2012). (PMID: 2224833910.1042/BJ20111626)
Broskey, N. T., Obanda, D. N., Burton, J. H., Cefalu, W. T. & Ravussin, E. Skeletal muscle ceramides and daily fat oxidation in obesity and diabetes. Metabolism 82, 118–123 (2018). (PMID: 29307520593003310.1016/j.metabol.2017.12.012)
Law, B. A. et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 32, 1403–1416 (2018). (PMID: 29127192589271910.1096/fj.201700300R)
Hernandez-Tiedra, S. et al. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy 12, 2213–2229 (2016). (PMID: 27635674510333810.1080/15548627.2016.1213927)
Signorelli, P. et al. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett. 282, 238–243 (2009). (PMID: 1939475910.1016/j.canlet.2009.03.020)
Zhang, Q. et al. The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling. Cell 174, 870–883 e817 (2018). (PMID: 30057120608673210.1016/j.cell.2018.06.029)
Roberts, L. D. et al. The contrasting roles of PPARdelta and PPARgamma in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue. Genome Biol. 12, R75 (2011). (PMID: 21843327324561510.1186/gb-2011-12-8-r75)
Oliveira, V. et al. Diets containing alpha-Linolenic (omega3) or oleic (omega9) fatty acids rescues obese mice from insulin resistance. Endocrinology 156, 4033–4046 (2015). (PMID: 2628012810.1210/en.2014-1880)
Wijesinghe, D. S. et al. Chain length specificity for activation of cPLA2alpha by C1P: use of the dodecane delivery system to determine lipid-specific effects. J. Lipid Res. 50, 1986–1995 (2009). (PMID: 19075030273976710.1194/jlr.M800367-JLR200)
Novgorodov, S. A., Gudz, T. I. & Obeid, L. M. Long-chain ceramide is a potent inhibitor of the mitochondrial permeability transition pore. J. Biol. Chem. 283, 24707–24717 (2008). (PMID: 18596045252900310.1074/jbc.M801810200)
Whitehead, A. et al. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat. Commun. 12, 1905 (2021). (PMID: 33772024799802710.1038/s41467-021-22272-3)
Cajka, T. & Fiehn, O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 88, 524–545 (2016). (PMID: 2663701110.1021/acs.analchem.5b04491)
Members, M. S. I. B. et al. The metabolomics standards initiative. Nat. Biotechnol. 25, 846–848 (2007). (PMID: 10.1038/nbt0807-846b)
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007). (PMID: 24039616377250510.1007/s11306-007-0082-2)
Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 (2007). (PMID: 1709893310.1093/nar/gkl838)
معلومات مُعتمدة: MR/R014086/1 United Kingdom MRC_ Medical Research Council; MC_PC_13030 United Kingdom MRC_ Medical Research Council; BB/R013500/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/T004231/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; MC_UU_00014/5 United Kingdom MRC_ Medical Research Council; MR/P011705/1 United Kingdom MRC_ Medical Research Council; MC_UP_A090_1006 United Kingdom MRC_ Medical Research Council; MR/P01836X/1 United Kingdom MRC_ Medical Research Council; 16/0005382 United Kingdom DUK_ Diabetes UK
المشرفين على المادة: 0 (Ceramides)
تواريخ الأحداث: Date Created: 20220402 Date Completed: 20220405 Latest Revision: 20230705
رمز التحديث: 20230705
مُعرف محوري في PubMed: PMC8975934
DOI: 10.1038/s41467-022-29363-9
PMID: 35365625
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-022-29363-9