دورية أكاديمية

Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer.

التفاصيل البيبلوغرافية
العنوان: Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer.
المؤلفون: Borzone FR; Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina., Giorello MB; Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina., Sanmartin MC; Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.; Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina., Yannarelli G; Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina., Martinez LM; Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA., Chasseing NA; Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
المصدر: British journal of pharmacology [Br J Pharmacol] 2024 Jan; Vol. 181 (2), pp. 238-256. Date of Electronic Publication: 2022 May 17.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مواضيع طبية MeSH: Breast Neoplasms*/drug therapy , Breast Neoplasms*/pathology , Cancer-Associated Fibroblasts*/pathology , Mesenchymal Stem Cells*/pathology, Humans ; Female ; Fibroblasts/pathology ; Tumor Microenvironment
مستخلص: Breast cancer is the most common type of cancer and the leading cause of death among women. Recent evidence suggests that mesenchymal stromal/stem cells and cancer-associated fibroblasts (CAFs) have an essential role in cancer progression, invasion and therapy resistance. Therefore, they are considered as highly promising future therapeutic targets against breast cancer. The intrinsic tumour tropism and immunomodulatory capacities of mesenchymal stromal/stem cells are of special relevance for developing mesenchymal stromal/stem cells-based anti-tumour therapies that suppress primary tumour growth and metastasis. In addition, the utilization of therapies that target the stromal components of the tumour microenvironment in combination with standard drugs is an innovative tool that could improve patients' response to therapies and their survival. In this review, we discuss the currently available information regarding the possible use of mesenchymal stromal/stem cells-derived anti-tumour therapies, as well as the utilization of therapies that target CAFs in breast cancer microenvironment. Finally, these data can serve as a guide map for future research in this field, ultimately aiding the effective transition of these results into the clinic. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
(© 2022 British Pharmacological Society.)
References: Acharyya, S., Oskarsson, T., Vanharanta, S., Malladi, S., Kim, J., Morris, P. G., Manova-Todorova, K., Leversha, M., Hogg, N., Seshan, V. E., Norton, L., Brogi, E., & Massagué, J. (2012). A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell, 150(1), 165-178. https://doi.org/10.1016/j.cell.2012.04.042.
Ahmadzadeh, A., Kast, R. E., Ketabchi, N., Shahrabi, S., Shahjahani, M., Jaseb, K., & Saki, N. (2015). Regulatory effect of chemokines in bone marrow niche. Cell and Tissue Research, 361(2), 401-410. https://doi.org/10.1007/s00441-015-2129-4.
Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al-hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). The Concise Guide to PHARMACOLOGY 2021/22: G protein-coupled receptors. British Journal of Pharmacology, 178(S1), S27-S156. https://doi.org/10.1111/bph.15538.
Alexander, S. P., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Beuve, A., Brouckaert, P., Bryant, C., Burnett, J. C., Farndale, R. W., Friebe, A., Garthwaite, J., … Waldman, S. A. (2021). The Concise Guide to PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 178(S1), S264-S312. https://doi.org/10.1111/bph.15541.
Alexander, S. P., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Koesling, D., … Wong, S. S. (2021). The Concise Guide to PHARMACOLOGY 2021/22: Enzymes. British Journal of Pharmacology, 178(S1), S313-S411. https://doi.org/10.1111/bph.15542.
Al-Harbi, B., Hendrayani, S. F., Silva, G., & Aboussekhra, A. (2018). Let-7b inhibits cancer-promoting effects of breast cancer associated fibroblasts through IL-8 repression. Oncotarget, 9(25), 17825-17838. https://doi.org/10.18632/oncotarget.24895.
Allaoui, R., Bergenfelz, C., Mohlin, S., Hagerling, C., Salari, K., Werb, Z., Anderson, R. L., Ethier, S. P., Jirström, K., Påhlman, S., Bexell, D., Tahin, B., Johansson, M. E., Larsson, C., & Leandersson, K. (2016). Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nature Communications, 7, 13050. https://doi.org/10.1038/ncomms13050.
Arendt, L. M., Rudnick, J. A., Keller, P. J., & Kuperwasser, C. (2010). Stroma in breast development and disease. Seminars in Cell and Developmental Biology, 21(1), 11-18. https://doi.org/10.1016/j.semcdb.2009.10.003.
Assefnia, S., Dakshanamurthy, S., Auvil, J. M. G., Hampel, C., Anastasiadis, P. Z., Kallakury, B., Uren, A., Foley, D. W., Brown, M. L., Shapiro, L., Brenner, M., Haigh, D., & Byers, S. W. (2014). Cadherin-11 in poor prognosis malignancies and rheumatoid arthritis: Common target, common therapies. Oncotarget, 5(6), 1458-1474. https://doi.org/10.18632/oncotarget.1538.
Baglio, S. R., Pegtel, D. M., & Baldini, N. (2012). Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in Physiology, 3, 1-11. https://doi.org/10.3389/fphys.2012.00359.
Bara, J. J., Richards, R. G., Alini, M., & Stoddart, M. J. (2014). Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: Implications for basic research and the clinic. Stem Cells, 32(7), 1713-1723. https://doi.org/10.1002/stem.1649.
Barcellos-de-Souza, P., Gori, V., Bambi, F., & Chiarugi, P. (2013). Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochimica et Biophysica Acta, Reviews on Cancer, 1836(2), 321-335. https://doi.org/10.1016/j.bbcan.2013.10.004.
Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R. H., Choi, H., & Prockop, D. J. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13724-13729. https://doi.org/10.1073/pnas.1008117107.
Becker, L. M., O'Connell, J. T., Vo, A. P., Cain, M. P., Tampe, D., Bizarro, L., Sugimoto, H., McGow, A. K., Asara, J. M., Lovisa1, S., McAndrews, K. M., Zielinski, R., Lorenzi, P. L., Zeisberg, M., Raza, S., LeBleu, V. S., & Kalluri, R. (2020). Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Reports, 31(9), 107701. https://doi.org/10.1016/j.celrep.2020.107701.
Bianco, P., Cao, X., Frenette, P. S., Mao, J. J., Robey, P. G., Simmons, P. J., & Wang, C. (2013). The meaning, the sense and the significance: Translating the science of mesenchymal stem cells into medicine. Nature Medicine, 19(1), 35-42. https://doi.org/10.1038/nm.3028.
Boesch, M., Onder, L., Cheng, H. W., Novkovic, M., Mörbe, U., Sopper, S., Gastl, G., Jochum, W., Ruhstaller, T., Knauer, M., & Ludewig, B. (2018). Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. OncoImmunology, 7(4), e1414129. https://doi.org/10.1080/2162402X.2017.1414129.
Bonneau, C., Eliès, A., Kieffer, Y., Bourachot, B., Ladoire, S., Pelon, F., Hequet, D., Guinebretière, J. M., Blanchet, C., Vincent-Salomon, A., Rouzier, R., & Mechta-Grigoriou, F. (2020). A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Research, 22(1), 1-22. https://doi.org/10.1186/s13058-020-01311-9.
Boomsma, R. A., & Geenen, D. L. (2012). Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS ONE, 7(4), e35685. https://doi.org/10.1371/journal.pone.0035685.
Broad, R. V., Jones, S. J., Teske, M. C., Wastall, L. M., Hanby, A. M., Thorne, J. L., & Hughes, T. A. (2021). Inhibition of interferon-signalling halts cancer-associated fibroblast-dependent protection of breast cancer cells from chemotherapy. British Journal of Cancer, 124(6), 1110-1120. https://doi.org/10.1038/s41416-020-01226-4.
Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney International, 78(9), 838-848. https://doi.org/10.1038/ki.2010.278.
Cavarretta, I. T., Altanerova, V., Matuskova, M., Kucerova, L., Culig, Z., & Altaner, C. (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molecular Therapy, 18(1), 223-231. https://doi.org/10.1038/mt.2009.237.
Chan, T., Shaked, Y., & Tsai, K. K. (2019). Targeting the interplay between cancer fibroblasts, mesenchymal stem cells, and cancer stem cells in desmoplastic cancers. Frontiers in Oncology, 9(July), 1-15. https://doi.org/10.3389/fonc.2019.00688.
Chauhan, V. P., Martin, J. D., Liu, H., Lacorre, D. A., Jain, S. R., Kozin, S. V., Stylianopoulos, T., Mousa, A. S., Han, X., Adstamongkonkul, P., Popović, Z., Huang, P., Bawendi, M. G., Boucher, Y., & Jain, R. K. (2013). Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nature Communications, 4, 2516. https://doi.org/10.1038/ncomms3516.
Chen, X., & Song, E. (2019). Turning foes to friends: Targeting cancer-associated fibroblasts. Nature Reviews Drug Discovery, 18(2), 99-115. https://doi.org/10.1038/s41573-018-0004-1.
Chen, X., Zhi, X., Wang, J., & Su, J. (2018). RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Research, 6(1), 1-8. https://doi.org/10.1038/s41413-018-0035-6.
Cho, J. A., Park, H., Lim, E. H., & Lee, K. W. (2011). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology, 40(1), 130-138. https://doi.org/10.3892/ijo.2011.1193.
Chulpanova, D. S., Kitaeva, K. V., Tazetdinova, L. G., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2018). Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Frontiers in Pharmacology, 9(259), 1-10. https://doi.org/10.3389/fphar.2018.00259.
Ciardiello, D., Elez, E., Tabernero, J., & Seoane, J. (2020). Clinical development of therapies targeting TGFβ: Current knowledge and future perspectives. Annals of Oncology, 31(10), 1336-1349. https://doi.org/10.1016/j.annonc.2020.07.009.
Cirri, P., & Chiarugi, P. (2012). Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer and Metastasis Reviews, 31(1-2), 195-208. https://doi.org/10.1007/s10555-011-9340-x.
Crane, G. M., Jeffery, E., & Morrison, S. J. (2017). Adult haematopoietic stem cell niches. Nature Reviews Immunology, 17, 573-590. https://doi.org/10.1038/nri.2017.53.
Danks, M. K., Yoon, K. J., Bush, R. A., Remack, J. S., Wierdl, M., Tsurkan, L., Kim, S. U., Garcia, E., Metz, M. Z., Najbauer, J., Potter, P. M., & Aboody, K. S. (2007). Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Research, 67(1), 22-25. https://doi.org/10.1158/0008-5472.CAN-06-3607.
De Witte, S. F. H., Franquesa, M., Baan, C. C., & Hoogduijn, M. J. (2016). Toward development of imesenchymal stem cells for immunomodulatory therapy. Frontiers in Immunology, 6(JAN), 648. https://doi.org/10.3389/fimmu.2015.00648.
Del Fattore, A., Luciano, R., Saracino, R., Battafarano, G., Rizzo, C., Pascucci, L., Alessandri, G., Pessina, A., Perrotta, A., Fierabracci, A., & Muraca, M. (2015). Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opinion on Biological Therapy, 15(4), 495-504. https://doi.org/10.1517/14712598.2015.997706.
Desbois, M., & Wang, Y. (2021). Cancer-associated fibroblasts: Key players in shaping the tumor immune microenvironment. Immunological Reviews, 302(1), 241-258. https://doi.org/10.1111/imr.12982.
Ding, Y., Zhang, C., Zhang, J., Zhang, N., Tao, L., Jie, F., Yi, Z., Zuo, F., Tao, Z., Shengnan, T., Zhu, W., Chen, H., & Sun, X. (2017). MiR-145 inhibits proliferation and migration of breast cancer cells by directly or indirectly regulating TGF-β1 expression. International Journal of Oncology, 50(5), 1701-1710. https://doi.org/10.3892/ijo.2017.3945.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8(4), 315-317. https://doi.org/10.1080/14653240600855905.
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Digabel, J. L., Forcato, M., Bicciato, S., Elvassore, N., & Piccolo, S. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474, 179-183. https://doi.org/10.1038/nature10137.
Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., Lowery, A. J., Hennessy, E., Murphy, J. M., Barry, F. P., O'Brien, T., & Kerin, M. J. (2007). Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clinical Cancer Research, 13(17), 5020-5027. https://doi.org/10.1158/1078-0432.CCR-07-0731.
Dykes, S. S., Hughes, V. S., Wiggins, J. M., Fasanya, H. O., Tanaka, M., & Siemann, D. (2018). Stromal cells in breast cancer as a potential therapeutic target. Oncotarget, 9(34), 23761-23779. https://doi.org/10.18632/oncotarget.25245.
Egea, V., Kessenbrock, K., Lawson, D., Bartelt, A., Weber, C., & Ries, C. (2021). Let-7f miRNA regulates SDF-1α- and hypoxia-promoted migration of mesenchymal stem cells and attenuates mammary tumor growth upon exosomal release. Cell Death & Disease, 12(6), 516. https://doi.org/10.1038/s41419-021-03789-3.
Egea, V., von Baumgarten, L., Schichor, C., Berninger, B., Popp, T., Neth, P., Goldbrunner, R., Kienast, Y., Winkler, F., Jochum, M., & Ries, C. (2011). TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death and Differentiation, 18(5), 853-863. https://doi.org/10.1038/cdd.2010.154.
Eiro, N., Gonzalez, L., Fraile, M., Cid, S., Schneider, J., & Vizoso, F. (2019). Breast cancer tumor stroma: Cellular components, phenotypic heterogeneity, intercellular communication, prognostic implications and therapeutic opportunities. Cancers, 11(5), 664. https://doi.org/10.3390/cancers11050664.
El-Haibi, C. P., & Karnoub, A. E. (2010). Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(4), 399-409. https://doi.org/10.1007/s10911-010-9196-7.
Eltoukhy, H. S., Sinha, G., Moore, C. A., Gergues, M., & Rameshwar, P. (2018). Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 155, 92-103. https://doi.org/10.1016/j.biochi.2018.05.018.
Fang, J., Xiao, L., Joo, K. I., Liu, Y., Zhang, C., Liu, S., Conti, P. S., Li, Z., & Wang, P. (2016). A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. International Journal of Cancer, 138(4), 1013-1023. https://doi.org/10.1002/ijc.29831.
Garg, P., Mazur, M. M., Buck, A. C., Wandtke, M. E., Liu, J., & Ebraheim, N. A. (2017). Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthopaedic Surgery, 9(1), 13-19. https://doi.org/10.1111/os.12304.
Giorello, M. B., Borzone, F. R., Labovsky, V., Piccioni, F. V., & Chasseing, N. A. (2021). Cancer-associated fibroblasts in the breast tumor microenvironment. Journal of Mammary Gland Biology and Neoplasia, 26(2), 135-155. https://doi.org/10.1007/s10911-020-09475-y.
Grisendi, G., Bussolari, R., Veronesi, E., Piccinno, S., Burns, J. S., De Santis, G., Loschi, P., Pignatti, M., Di Benedetto, F., Ballarin, R., Di Gregorio, C., Guarneri, V., Piccinini, L., Horwitz, E. M., Paolucci, P., Conte, P., & Dominici, M. (2011). Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: The Mesenkillers. American Journal of Cancer Research, 1(6), 787-805.
Guo, Y., Zhai, Y., Wu, L., Wang, Y., Wu, P., & Xiong, L. (2022). Mesenchymal stem cell-derived extracellular vesicles: Pleiotropic impacts on breast cancer occurrence, development, and therapy. 23, 2927. https://doi.org/10.3390/ijms23062927.
Haider, M. T., Smit, D. J., & Taipaleenmäki, H. (2020). The endosteal niche in breast cancer bone metastasis. Frontiers in Oncology, 10(March), 1-11. https://doi.org/10.3389/fonc.2020.00335.
Hamidi, H., & Ivaska, J. (2018). Every step of the way: Integrins in cancer progression and metastasis. Nature Reviews Cancer, 18(9), 533-548. https://doi.org/10.1038/s41568-018-0038-z.
Hart, C. D., Migliaccio, I., Malorni, L., Guarducci, C., Biganzoli, L., & Di Leo, A. (2015). Challenges in the management of advanced, ER-positive,HER2-negative breast cancer. Nature Reviews. Clinical Oncology, 12(9), 541-552. https://doi.org/10.1038/nrclinonc.2015.99.
Hauge, A., & Rofstad, E. K. (2020). Antifibrotic therapy to normalize the tumor microenvironment. Journal of Translational Medicine, 18(1), 1-11. https://doi.org/10.1186/s12967-020-02376-y.
Hegmans, J. P. J. J., Gerber, P. J., & Lambrecht, B. N. (2008). Functional Proteomics. In J. D. Thompson, M. Ueffing, & C. Schaeffer-Reiss (Eds.), Methods in molecular biology (Vol. 484). Humana Press. https://doi.org/10.1007/978-1-59745-398-1.
Heidari, R., Gholamian Dehkordi, N., Mohseni, R., & Safaei, M. (2020). Engineering mesenchymal stem cells: A novel therapeutic approach in breast cancer. Journal of Drug Targeting, 28(7-8), 732-741. https://doi.org/10.1080/1061186X.2020.1775842.
Hill, B. S., Sarnella, A., D'Avino, G., & Zannetti, A. (2020). Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Seminars in Cancer Biology, 60(August 2019), 202-213. https://doi.org/10.1016/j.semcancer.2019.07.028.
Holmgaard, R. B., Schaer, D. A., Li, Y., Castaneda, S. P., Murphy, M. Y., Xu, X., Inigo, I., Dobkin, J., Manro, J. R., Iversen, P. W., Surguladze, D., Hall, G. E., Novosiadly, R. D., Benhadji, K. A., Plowman, G. D., Kalos, M., & Driscoll, K. E. (2018). Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. Journal for Immunotherapy of Cancer, 6(1), 1-15. https://doi.org/10.1186/s40425-018-0356-4.
Howell, A., Baum, M., & Forbes, J. F. (2005). Results of the ATAC (Arimidex, tamoxifen, alone or in combination) trial after completion of 5 years' adjuvant treatment for breast cancer. The Lancet, 365(9453), 60-62. https://doi.org/10.1016/S0140-6736(04)17666-6.
Hu, C., Liu, X., Ran, W., Meng, J., Zhai, Y., Zhang, P., Yin, Q., Yu, H., Zhang, Z., & Li, Y. (2017). Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials, 144, 60-72. https://doi.org/10.1016/j.biomaterials.2017.08.009.
Hu, X., Guo, J., Zheng, L., Li, C., Zheng, T. M., Tanyi, J. L., Liang, S., Benedetto, C., Mitidieri, M., Katsaros, D., Zhao, X., Zhang, Y., Huang, Q., & Zhang, L. (2013). The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Molecular Cancer Research, 11(3), 240-250. https://doi.org/10.1158/1541-7786.MCR-12-0432.
International Agency for Research on Cancer. (2018). GLOBOCAN Cancer Fact Sheet 2018 [Fact sheet]. http://Globocan.Iarc.Fr/Factsheet/Cancer.
Ishii, G., Ochiai, A., & Neri, S. (2016). Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Advanced Drug Delivery Reviews, 99, 186-196. https://doi.org/10.1016/j.addr.2015.07.007.
Javeri, A., Ghaffarpour, M., Taha, M. F., & Houshmand, M. (2013). Downregulation of miR-34a in breast tumors is not associated with either p53 mutations or promoter hypermethylation while it correlates with metastasis. Medical Oncology, 30(1), 413. https://doi.org/10.1007/s12032-012-0413-7.
Ji, T., Zhao, Y., Ding, Y., Wang, J., Zhao, R., Lang, J., Qin, H., Liu, X., Shi, J., Tao, N., Qin, Z., Nie, G., & Zhao, Y. (2016). Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angewandte Chemie International Edition, 55(3), 1050-1055. https://doi.org/10.1002/anie.201506262.
Jiang, W., & Xu, J. (2020). Immune modulation by mesenchymal stem cells. Cell Proliferation, 53(1), 1-16. https://doi.org/10.1111/cpr.12712.
Johnson, D. E., O'Keefe, R. A., & Grandis, J. R. (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews. Clinical Oncology, 15(4), 234-248. https://doi.org/10.1038/nrclinonc.2018.8.
Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D., & Slack, F. J. (2005). RAS is regulated by the let-7 MicroRNA family. Cell, 120(5), 635-647. https://doi.org/10.1016/j.cell.2005.01.014.
Kalimuthu, S., Zhu, L., Oh, J. M., Gangadaran, P., Lee, H. W., Baek, S. H., Rajendran, R. L., Gopal, A., Jeong, S. Y., Lee, S. W., Lee, J., & Ahn, B. C. (2018). Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin. International Journal of Medical Sciences, 15(10), 1051-1061. https://doi.org/10.7150/ijms.25760.
Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews Cancer, 16(9), 582-598. https://doi.org/10.1038/nrc.2016.73.
Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392-401. https://doi.org/10.1038/nrc1877.
Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., Richardson, A. L., Polyak, K., Tubo, R., & Weinberg, R. A. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557-563. https://doi.org/10.1038/nature06188.
Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C. U., Voduc, D., Speers, C. H., Nielsen, T. O., & Gelmon, K. (2010). Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology, 28(20), 3271-3277. https://doi.org/10.1200/JCO.2009.25.9820.
Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., Battula, V. L., Weil, M., Andreeff, M., & Marini, F. C. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27(10), 2614-2623. https://doi.org/10.1002/stem.187.
Kilroy, G. E., Foster, S. J., Wu, X., Ruiz, J., Sherwood, S., Heifetz, A., Ludlow, J. W., Stricker, D. M., Potiny, S., Green, P., Halvorsen, Y. C., Cheatham, B., Storms, R. W., & Gimble, J. M. (2007). Cytokine profile of human adipose-derived stem cells: Expression of angiogenic, hematopoietic, and pro-inflammatory factors. Journal of Cellular Physiology, 212(3), 702-709. https://doi.org/10.1002/jcp.21068.
Kim, D. J., Dunleavey, J. M., Xiao, L., Ollila, D. W., Troester, M. A., Otey, C. A., Li, W., Barker, T. H., & Dudley, A. C. (2018). Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. British Journal of Cancer, 118(10), 1359-1368. https://doi.org/10.1038/s41416-018-0072-3.
Kim, E.-J., Kim, N., & Cho, S.-G. (2013). The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Experimental & Molecular Medicine, 45(1), e2. https://doi.org/10.1038/emm.2013.2.
Klemm, F., & Joyce, J. A. (2015). Microenvironmental regulation of therapeutic response in cancer. Trends in Cell Biology, 25(4), 198-213. https://doi.org/10.1016/j.tcb.2014.11.006.
Kobolak, J., Dinnyes, A., Memic, A., Khademhosseini, A., & Mobasheri, A. (2016). Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 99(2016), 62-68. https://doi.org/10.1016/j.ymeth.2015.09.016.
Kostadinova, M., & Mourdjeva, M. (2020). Potential of mesenchymal stem cells in anti-cancer therapies. Current Stem Cell Research & Therapy, 15(6), 482-491. https://doi.org/10.2174/1574888x15666200310171547.
Lan, T., Luo, M., & Wei, X. (2021). Mesenchymal stem/stromal cells in cancer therapy. Journal of Hematology & Oncology, 14(1), 1-16. https://doi.org/10.1186/s13045-021-01208-w.
Lan, Y., Zhang, D., Xu, C., Hance, K. W., Marelli, B., Qi, J., Yu, H., Qin, G., Sircar, A., Hernández, V. M., Jenkins, M. H., Fontana, R. E., Deshpande, A., Locke, G., Sabzevari, H., Radvanyi, L., & Lo, K. M. (2018). Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF. Science Translational Medicine, 10(424), eaan5488. https://doi.org/10.1126/scitranslmed.aan5488.
Larsen, K. H., Frederiksen, C. M., Burns, J. S., Abdallah, B. M., & Kassem, M. (2009). Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone forming capacity. Journal of Bone and Mineral Research, 25(4), 796-808. https://doi.org/10.1359/jbmr.091018.
Lazennec, G., & Lam, P. Y. (2016). Recent discoveries concerning the tumor-mesenchymal stem cell interactions. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1866(2), 290-299. https://doi.org/10.1016/j.bbcan.2016.10.004.
LeBleu, V. S., & Kalluri, R. (2018). A peek into cancer-associated fibroblasts: Origins, functions and translational impact. Disease Models & Mechanisms, 11(4), dmm029447. https://doi.org/10.1242/dmm.029447.
Lee, J.-K., Park, S., Jung, B., Jeon, Y., Lee, Y., Kim, M.-K., Kim, Y.-G., Jang, J., & Kim, C. (2013). Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE, 8(12), e84256. https://doi.org/10.1371/journal.pone.0084256.
Lee, R. H., Yoon, N., Reneau, J. C., & Prockop, D. J. (2012). Preactivation of human MSCs with TNF-α enhances tumor-suppressive activity. Cell Stem Cell, 11(6), 825-835. https://doi.org/10.1016/j.stem.2012.10.001.
Lee, Y. T., Tan, Y. J., Falasca, M., & Oon, C. E. (2020). Cancer-associated fibroblasts: Epigenetic regulation and therapeutic intervention in breast cancer. Cancers, 12(10), 1-23. https://doi.org/10.3390/cancers12102949.
Li, A., Chen, P., Leng, Y., & Kang, J. (2018). Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-dependent pathway. Oncogene, 37(45), 5952-5966. https://doi.org/10.1038/s41388-018-0379-9.
Li, J. (2011). Quiescence regulators for hematopoietic stem cell. Experimental Hematology, 39(5), 511-520. https://doi.org/10.1016/j.exphem.2011.01.008.
Li, Q., Zhang, D., Wang, Y., Sun, P., Hou, X., Larner, J., Xiong, W., & Mi, J. (2013). MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Scientific Reports, 3(1), 2038. https://doi.org/10.1038/srep02038.
Li, X., Bai, J., Ji, X., Li, R., Xuan, Y., & Wang, Y. (2014). Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. International Journal of Molecular Medicine, 34(3), 695-704. https://doi.org/10.3892/ijmm.2014.1821.
Liao, D., Luo, Y., Markowitz, D., Xiang, R., & Reisfeld, R. A. (2009). Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE, 4(11), e7965. https://doi.org/10.1371/journal.pone.0007965.
Liu, H., Deng, S., Han, L., Ren, Y., Gu, J., He, L., Liu, T., & Yuan, Z. X. (2022). Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy. Colloids and Surfaces B: Biointerfaces, 209(P1), 112163. https://doi.org/10.1016/j.colsurfb.2021.112163.
Liu, J., Liao, S., Diop-Frimpong, B., Chen, W., Goel, S., Naxerova, K., Ancukiewicz, M., Boucher, Y., Jain, R. K., & Xu, L. (2012). TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16618-16623. https://doi.org/10.1073/pnas.1117610109.
Liu, L., Zhang, S. X., Liao, W., Farhoodi, H. P., Wong, C. W., Chen, C. C., Ségaliny, A. I., Chacko, J. V., Nguyen, L. P., Lu, M., Polovin, G., Pone, E. J., Downing, T. L., Lawson, D. A., Digman, M. A., & Zhao, W. (2017). Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Science Translational Medicine, 9(400), eaan2966. https://doi.org/10.1126/scitranslmed.aan2966.
Lobb, R. J., van Amerongen, R., Wiegmans, A., Ham, S., Larsen, J. E., & Möller, A. (2017). Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. International Journal of Cancer, 141(3), 614-620. https://doi.org/10.1002/ijc.30752.
Loebinger, M. R., Eddaoudi, A., Davies, D., & Janes, S. M. (2009). Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Research, 69(10), 4134-4142. https://doi.org/10.1158/0008-5472.CAN-08-4698.
Loeffler, M., Krüger, J. A., Niethammer, A. G., & Reisfeld, R. A. (2006). Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. Journal of Clinical Investigation, 116(7), 1955-1962. https://doi.org/10.1172/JCI26532.
Logozzi, M., Spugnini, E., Mizzoni, D., Di Raimo, R., & Fais, S. (2019). Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer and Metastasis Reviews, 38(1-2), 93-101. https://doi.org/10.1007/s10555-019-09783-8.
Lopes-Paciencia, S., Saint-Germain, E., Rowell, M. C., Ruiz, A. F., Kalegari, P., & Ferbeyre, G. (2019). The senescence-associated secretory phenotype and its regulation. Cytokine, 117, 15-22. https://doi.org/10.1016/j.cyto.2019.01.013.
Lorusso, G., & Rüegg, C. (2008). The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochemistry and Cell Biology, 130(6), 1091-1103. https://doi.org/10.1007/s00418-008-0530-8.
Luo, H., Tu, G., Liu, Z., & Liu, M. (2015). Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Letters, 361(2), 155-163. https://doi.org/10.1016/j.canlet.2015.02.018.
Majidinia, M., & Yousefi, B. (2017). Breast tumor stroma: A driving force in the development of resistance to therapies. Chemical Biology and Drug Design, 89(3), 309-318. https://doi.org/10.1111/cbdd.12893.
Manolagas, S. C., & Jilka, R. L. (1995). Bone marrow, cytokines, and bone remodeling-Emerging insights into the pathophysiology of osteoporosis. New England Journal of Medicine, 332(5), 305-311. https://doi.org/10.1056/NEJM199502023320506.
Martinez, L. M., Vallone, V. B. F., Labovsky, V., Choi, H., Hofer, E. L., Feldman, L., Bordenave, R. H., Batagelj, E., Dimase, F., Villafañe, A. R., & Chasseing, N. A. (2014). Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases. Clinical and Experimental Metastasis, 31(2), 213-232. https://doi.org/10.1007/s10585-013-9622-5.
Meisel, R., Zibert, A., Laryea, M., Göbel, U., Däubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103(12), 4619-4621. https://doi.org/10.1182/blood-2003-11-3909.
Melzer, C., Yang, Y., & Hass, R. (2016). Interaction of MSC with tumor cells. Cell Communication and Signaling: CCS, 14(1), 20. https://doi.org/10.1186/s12964-016-0143-0.
Mohr, A., & Zwacka, R. (2018). The future of mesenchymal stem cell-based therapeutic approaches for cancer-From cells to ghosts. Cancer Letters, 414, 239-249. https://doi.org/10.1016/j.canlet.2017.11.025.
Mpekris, F., Papageorgis, P., Polydorou, C., Voutouri, C., Kalli, M., Pirentis, A. P., & Stylianopoulos, T. (2017). Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. Journal of Controlled Release, 261, 105-112. https://doi.org/10.1016/j.jconrel.2017.06.022.
Najafi, M., Goradel, N. H., Farhood, B., Salehi, E., Solhjoo, S., Toolee, H., Kharazinejad, E., & Mortezaee, K. (2019). Tumor microenvironment: Interactions and therapy. Journal of Cellular Physiology, 234(5), 5700-5721. https://doi.org/10.1002/jcp.27425.
Narayanan, R., Huang, C. C., & Ravindran, S. (2016). Hijacking the cellular mail: Exosome mediated differentiation of mesenchymal stem cells. Stem Cells International, 2016, 3808674. https://doi.org/10.1155/2016/3808674.
Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499-3506. https://doi.org/10.1182/blood-2007-02-069716.
O'Brien, K. P., Khan, S., Gilligan, K. E., Zafar, H., Lalor, P., Glynn, C., O'Flatharta, C., Ingoldsby, H., Dockery, P., De Bhulbh, A., Schweber, J. R., St John, K., Leahy, M., Murphy, J. M., Gallagher, W. M., O'Brien, T., Kerin, M. J., & Dwyer, R. M. (2018). Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene, 37(16), 2137-2149. https://doi.org/10.1038/s41388-017-0116-9.
Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V. J., Richardson, A. L., & Weinberg, R. A. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335-348. https://doi.org/10.1016/j.cell.2005.02.034.
Pakravan, K., Babashah, S., Sadeghizadeh, M., Mowla, S. J., Mossahebi-Mohammadi, M., Ataei, F., Dana, N., & Javan, M. (2017). MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cellular Oncology, 40(5), 457-470. https://doi.org/10.1007/s13402-017-0335-7.
Panagi, M., Voutouri, C., Mpekris, F., Papageorgis, P., Martin, M. R., Martin, J. D., Demetriou, P., Pierides, C., Polydorou, C., Stylianou, A., Louca, M., Koumas, L., Costeas, P., Kataoka, K., Cabral, H., & Stylianopoulos, T. (2020). TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics, 10(4), 1910-1922. https://doi.org/10.7150/thno.36936.
Parato, K. A., Senger, D., Forsyth, P. A. J., & Bell, J. C. (2005). Recent progress in the battle between oncolytic viruses and tumours. Nature Reviews Cancer, 5(12), 965-976. https://doi.org/10.1038/nrc1750.
Pegtel, D. M., & Gould, S. J. (2019). Exosomes. Annual Review of Biochemistry, 88, 487-514. https://doi.org/10.1146/annurev-biochem-013118-111902.
Peinado, H., Lavotshkin, S., & Lyden, D. (2011). The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Seminars in Cancer Biology, 21(2), 139-146. https://doi.org/10.1016/j.semcancer.2011.01.002.
Piersma, B., Hayward, M. K., & Weaver, V. M. (2020). Fibrosis and cancer: A strained relationship. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1873(2), 188356. https://doi.org/10.1016/j.bbcan.2020.188356.
Polydorou, C., Mpekris, F., Papageorgis, P., Voutouri, C., & Stylianopoulos, T. (2017). Pirfenidone normalizes the tumor microenvironment to improve chemotherapy. Oncotarget, 8(15), 24506-24517. https://doi.org/10.18632/oncotarget.15534.
Post, S., Abdallah, B. M., Bentzon, J. F., & Kassem, M. (2008). Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone, 43(1), 32-39. https://doi.org/10.1016/j.bone.2008.03.011.
Qiao, A., Gu, F., Guo, X., Zhang, X., & Fu, L. (2016). Breast cancer-associated fibroblasts: Their roles in tumor initiation, progression and clinical applications. Frontiers of Medicine, 10(1), 33-40. https://doi.org/10.1007/s11684-016-0431-5.
Qiao, L., Xu, Z., Zhao, T., Ye, L., & Zhang, X. (2008). Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Letters, 269(1), 67-77. https://doi.org/10.1016/j.canlet.2008.04.032.
Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19(11), 1423-1437. https://doi.org/10.1038/nm.3394.
Quante, M., Tu, S. P., Tomita, H., Gonda, T., Wang, S. S. W., Takashi, S., Baik, G. H., Shibata, W., DiPrete, B., Betz, K. S., Friedman, R., Varro, A., Tycko, B., & Wang, T. C. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19(2), 257-272. https://doi.org/10.1016/j.ccr.2011.01.020.
Raab-Westphal, S., Marshall, J. F., & Goodman, S. L. (2017). Integrins as therapeutic targets: Successes and cancers. Cancers, 9(9), 1-28. https://doi.org/10.3390/cancers9090110.
Rattigan, Y., Hsu, J. M., Mishra, P. J., Glod, J., & Banerjee, D. (2010). Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Experimental Cell Research, 316(20), 3417-3424. https://doi.org/10.1016/j.yexcr.2010.07.002.
Raz, Y., Cohen, N., Shani, O., Bell, R. E., Novitskiy, S. V., Abramovitz, L., Levy, C., Milyavsky, M., Leider-Trejo, L., Moses, H. L., Grisaru, D., & Erez, N. (2018). Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. Journal of Experimental Medicine, 215(12), 3075-3093. https://doi.org/10.1084/jem.20180818.
Reardon, D. A., Akabani, G., Coleman, R. E., Friedman, A. H., Friedman, H. S., Herndon, J. E., McLendon, R. E., Pegram, C. N., Provenzale, J. M., Quinn, J. A., Rich, J. N., Vredenburgh, J. J., Desjardins, A., Guruangan, S., Badruddoja, M., Dowell, J. M., Wong, T. Z., Zhao, X. G., Zalutsky, M. R., & Bigner, D. D. (2006). Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: Phase II study results. Journal of Clinical Oncology, 24(1), 115-122. https://doi.org/10.1200/JCO.2005.03.4082.
Ren, Y., Zhou, X., Liu, X., Jia, H. H., Zhao, X. H., Wang, Q. X., Han, L., Song, X., Zhu, Z. Y., Sun, T., Jiao, H. X., Tian, W. P., Yang, Y. Q., Zhao, X. L., Zhang, L., Mei, M., & Kang, C. S. (2016). Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy. Cancer Letters, 374(1), 96-106. https://doi.org/10.1016/j.canlet.2016.02.003.
Ren, Y., Zhou, X., Yang, J. J., Liu, X., Zhao, X. H., Wang, Q. X., Han, L., Song, X., Zhu, Z. Y., Tian, W. P., Zhang, L., Mei, M., & Kang, C. S. (2015). AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis. Cancer Letters, 362(2), 174-182. https://doi.org/10.1016/j.canlet.2015.03.038.
Rhodes, L. V., Muir, S. E., Elliott, S., Guillot, L. M., Antoon, J. W., Penfornis, P., Tilghman, S. L., Salvo, V. A., Fonseca, J. P., Lacey, M. R., Beckman, B. S., McLachlan, J. A., Rowan, B. G., Pochampally, R., & Burow, M. E. (2010). Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Research and Treatment, 121(2), 293-300. https://doi.org/10.1007/s10549-009-0458-2.
Ruano, D., López-Martín, J. A., Moreno, L., Lassaletta, Á., Bautista, F., Andión, M., Hernández, C., González-Murillo, Á., Melen, G., Alemany, R., Madero, L., García-Castro, J., & Ramírez, M. (2020). First-in-human, first-in-child trial of autologous MSCs carrying the oncolytic virus Icovir-5 in patients with advanced tumors. Molecular Therapy, 28(4), 1033-1042. https://doi.org/10.1016/j.ymthe.2020.01.019.
Rui, X., Zhao, H., Xiao, X., Wang, L., Mo, L., & Yao, Y. (2018). MicroRNA-34a suppresses breast cancer cell proliferation and invasion by targeting Notch1. Experimental and Therapeutic Medicine, 16(6), 4387-4392. https://doi.org/10.3892/etm.2018.6744.
Ruocco, M. R., Avagliano, A., Granato, G., Imparato, V., Masone, S., Masullo, M., Nasso, R., Montagnani, S., & Arcucci, A. (2018). Involvement of breast cancer-associated fibroblasts in tumor development, therapy resistance and evaluation of potential therapeutic strategies. Current Medicinal Chemistry, 25(29), 3414-3434. https://doi.org/10.2174/0929867325666180309120746.
Saleh, R., Toor, S. M., Khalaf, S., & Elkord, E. (2019). Breast cancer cells and PD-1/PD-L1 blockade upregulate the expression of PD-1, CTLA-4, TIM-3 and LAG-3 immune checkpoints in CD4+ T cells. Vaccine, 7(4), 149. https://doi.org/10.3390/vaccines7040149.
Salimifard, S., Masjedi, A., Hojjat-Farsangi, M., Ghalamfarsa, G., Irandoust, M., Azizi, G., Mohammadi, H., Keramati, M. R., & Jadidi-Niaragh, F. (2020). Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathology Research and Practice, 216(5), 152915. https://doi.org/10.1016/j.prp.2020.152915.
Santen, R. J., Santner, S. J., Pauley, R. J., Tait, L., Kaseta, J., Demers, L. M., Hamilton, C., Yue, W., & Wang, J. P. (1997). Estrogen production via the aromatase enzyme in breast carcinoma: Which cell type is responsible? The Journal of Steroid Biochemistry and Molecular Biology, 61(3-6), 267-271. https://doi.org/10.1016/S0960-0760(97)80022-2.
Santolla, M. F., Lappano, R., Cirillo, F., Rigiracciolo, D. C., Sebastiani, A., Abonante, S., Tassone, P., Tagliaferri, P., Di Martino, M. T., Maggiolini, M., & Vivacqua, A. (2018). MiR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. Journal of Experimental & Clinical Cancer Research, 37(1), 1-12. https://doi.org/10.1186/s13046-018-0767-6.
Schäfer, M., & Werner, S. (2008). Cancer as an overhealing wound: An old hypothesis revisited. Nature Reviews Molecular Cell Biology, 9(8), 628-638. https://doi.org/10.1038/nrm2455.
Shangguan, L., Ti, X., Krause, U., Hai, B., Zhao, Y., Yang, Z., & Liu, F. (2012). Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells, 30(12), 2810-2819. https://doi.org/10.1002/stem.1251.
Sharma, M., Turaga, R. C., Yuan, Y., Satyanarayana, G., Mishra, F., Bian, Z., Liu, W., Sun, L., Yang, J., & Liu, Z. R. (2021). Simultaneously targeting cancer-associated fibroblasts and angiogenic vessel as a treatment for TNBC. Journal of Experimental Medicine, 218(4), e20200712. https://doi.org/10.1084/JEM.20200712.
Sheykhhasan, M., Kalhor, N., Sheikholeslami, A., Dolati, M., Amini, E., & Fazaeli, H. (2021). Exosomes of mesenchymal stem cells as a proper vehicle for transfecting miR-145 into the breast cancer cell line and its effect on metastasis. BioMed Research International, 2021, 5516078. https://doi.org/10.1155/2021/5516078.
Shi, Z., Zhang, J., Qian, X., Han, L., Zhang, K., Chen, L., Liu, J., Ren, Y., Yang, M., Zhang, A., Pu, P., & Kang, C. (2013). AC1MMYR2, an inhibitor of dicer-mediated biogenesis of oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Research, 73(17), 5519-5531. https://doi.org/10.1158/0008-5472.CAN-13-0280.
Shin, S., Lee, J., Kwon, Y., Park, K. S., Jeong, J. H., Choi, S. J., Bang, S. I., Chang, J. W., & Lee, C. (2021). Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton's jelly. International Journal of Molecular Sciences, 22(2), 1-17. https://doi.org/10.3390/ijms22020845.
Singha, N. C., Nekoroski, T., Zhao, C., Symons, R., Jiang, P., Frost, G. I., Huang, Z., & Shepard, H. M. (2015). Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy. Molecular Cancer Therapeutics, 14(2), 523-532. https://doi.org/10.1158/1535-7163.MCT-14-0580.
Sjöberg, E., Augsten, M., Bergh, J., Jirström, K., & Östman, A. (2016). Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. British Journal of Cancer, 114(10), 1117-1124. https://doi.org/10.1038/bjc.2016.104.
Sjöberg, E., Meyrath, M., Milde, L., Herrera, M., Lövrot, J., Hägerstrand, D., Frings, O., Bartish, M., Rolny, C., Sonnhammer, E., Chevigné, A., Augsten, M., & Östman, A. (2019). A novel ACKR2-dependent role of fibroblast-derived CXCL14 in epithelial-to-mesenchymal transition and metastasis of breast cancer. Clinical Cancer Research, 25(12), 3702-3717. https://doi.org/10.1158/1078-0432.CCR-18-1294.
Soufiani, K. B., Pourfathollah, A. A., Zarif, M. N., & Arefian, E. (2021). Tumor microenvironment changing through application of MicroRNA-34a related mesenchymal stem cells conditioned medium: Modulation of breast cancer cells toward non-aggressive behavior. Iranian Journal of Allergy, Asthma, and Immunology, 20(2), 221-232. https://doi.org/10.18502/ijaai.v20i2.6055.
Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33(6), 919-926. https://doi.org/10.1016/j.bone.2003.07.005.
Stoff-Khalili, M. A., Rivera, A. A., Mathis, J. M., Banerjee, N. S., Moon, A. S., Hess, A., Rocconi, R. P., Numnum, T. M., Everts, M., Chow, L. T., Douglas, J. T., Siegal, G. P., Zhu, Z. B., Bender, H. G., Dall, P., Stoff, A., Pereboeva, L., & Curiel, D. T. (2007). Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Research and Treatment, 105(2), 157-167. https://doi.org/10.1007/s10549-006-9449-8.
Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., Champlin, R. E., & Andreef, M. (2004). Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96(21), 1593-1603. https://doi.org/10.1093/jnci/djh299.
Su, S., Chen, J., Yao, H., Liu, J., Yu, S., Lao, L., Wang, M., Luo, M., Xing, Y., Chen, F., Huang, D., Zhao, J., Yang, L., Liao, D., Su, F., Li, M., Liu, Q., & Song, E. (2018). CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer Stemness. Cell, 172(4), 841-856.e16. https://doi.org/10.1016/j.cell.2018.01.009.
Sun, B., Roh, K. H., Park, J. R., Lee, S. R., Park, S. B., Jung, J. W., Kang, S. K., Lee, Y. S., & Kang, K. S. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11(3), 289-298. https://doi.org/10.1080/14653240902807026.
Sun, X., Mao, Y., Wang, J., Zu, L., Hao, M., Cheng, G., Qu, Q., Cui, D., Keller, E. T., Chen, X., Shen, K., & Wang, J. (2014). IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene, 33(35), 4450. https://doi.org/10.1038/onc.2014.224.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660.
Takai, K., Le, A., Weaver, V. M., & Werb, Z. (2016). Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget, 7(50), 82889-82901. https://doi.org/10.18632/oncotarget.12658.
Tchou, J., & Conejo-Garcia, J. (2012). Targeting the tumor stroma as a novel treatment strategy for breast cancer. In Advances in pharmacology (Vol. 65, pp. 45-61). Elsevier Inc. https://doi.org/10.1016/B978-0-12-397927-8.00003-8.
Togo, S., Polanska, U. M., Horimoto, Y., & Orimo, A. (2013). Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers, 5(1), 149-169. https://doi.org/10.3390/cancers5010149.
Tomchuck, S. L., Zwezdaryk, K. J., Coffelt, S. B., Waterman, R. S., Danka, E. S., & Scandurro, A. B. (2008). Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells, 26(1), 99-107. https://doi.org/10.1634/stemcells.2007-0563.
Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells-Current trends and future prospective. Bioscience Reports, 35(2), e00191. https://doi.org/10.1042/BSR20150025.
Valkenburg, K. C., de Groot, A. E., & Pienta, K. J. (2018). Targeting the tumour stroma to improve cancer therapy. Nature Reviews. Clinical Oncology, 15(6), 366-381. https://doi.org/10.1038/s41571-018-0007-1.
Xia, Q., Geng, F., Zhang, F. F., Liu, C. L., Xu, P., Lu, Z. Z., Xie, Y., Sun, B., Wu, H., Yu, B., Kong, W., Yu, X. H., & Zhang, H. H. (2017). Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein α-based DNA vaccine in tumor-bearing mice with murine breast carcinoma. Immunopharmacology and Immunotoxicology, 39(1), 37-44. https://doi.org/10.1080/08923973.2016.1269337.
Ye, Z., Fang, J., Dai, S., Wang, Y., Fu, Z., Feng, W., Wei, Q., & Huang, P. (2016). MicroRNA-34a induces a senescence-like change via the down-regulation of SIRT1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background. Cancer Letters, 370(2), 216-221. https://doi.org/10.1016/j.canlet.2015.10.023.
Yin, T., & Li, L. (2006). The stem cell niches in bone. Journal of Clinical Investigation, 116(5), 1195-1201. https://doi.org/10.1172/JCI28568.
Yoon, N., Park, M. S., Peltier, G. C., & Lee, R. H. (2015). Pre-activated human mesenchymal stromal cells in combination with doxorubicin synergistically enhance tumor-suppressive activity in mice. Cytotherapy, 17(10), 1332-1341. https://doi.org/10.1016/j.jcyt.2015.06.009.
Yoon, N., Park, M. S., Shigemoto, T., Peltier, G., & Lee, R. H. (2016). Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β. Cell Death & Disease, 7(4), e2191-e2111. https://doi.org/10.1038/cddis.2016.90.
Yu, Y., Wu, R. X., Gao, L. N., Xia, Y., Tang, H. N., & Chen, F. M. (2016). Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli. Cell Adhesion & Migration, 10(4), 342-359. https://doi.org/10.1080/19336918.2016.1139287.
Yuan, Z. Q., Kolluri, K. K., Gowers, K. H. C., & Janes, S. M. (2017). TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. Journal of Extracellular Vesicles, 6(1), 1265291. https://doi.org/10.1080/20013078.2017.1265291.
Zeinali, T., Mansoori, B., Mohammadi, A., & Baradaran, B. (2019). Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomedicine & Pharmacotherapy, 109, 195-207. https://doi.org/10.1016/j.biopha.2018.10.037.
Zhen, Z., Tang, W., Wang, M., Zhou, S., Wang, H., Wu, Z., Hao, Z., Li, Z., Liu, L., & Xie, J. (2017). Protein Nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Letters, 17(2), 862-869. https://doi.org/10.1021/acs.nanolett.6b04150.
Zhu, Y., Sun, Z., Han, Q., Liao, L., Wang, J., Bian, C., Li, J., Yan, X., Liu, Y., Shao, C., & Zhao, R. C. (2009). Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia, 23(5), 925-933. https://doi.org/10.1038/leu.2008.384.
معلومات مُعتمدة: Fundación Alberto J. Roemmers; Fundación Williams; Fundación René Barón; Fundación Florencio Fiorini; Fundación Alberto Roemmers; Fondo para la Investigación Científica y Tecnológica; Consejo Nacional de Investigaciones Científicas y Técnicas
فهرسة مساهمة: Keywords: breast cancer; cancer-associated fibroblasts; mesenchymal stem cells; therapeutic approaches
تواريخ الأحداث: Date Created: 20220429 Date Completed: 20231228 Latest Revision: 20240306
رمز التحديث: 20240307
DOI: 10.1111/bph.15861
PMID: 35485850
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5381
DOI:10.1111/bph.15861