دورية أكاديمية

Lichen-like anchoring of MoSe 2 on functionalized multiwalled carbon nanotubes: an efficient electrode for asymmetric supercapacitors.

التفاصيل البيبلوغرافية
العنوان: Lichen-like anchoring of MoSe 2 on functionalized multiwalled carbon nanotubes: an efficient electrode for asymmetric supercapacitors.
المؤلفون: Karade SS; Electrochemical Energy Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul-03722 Republic of Korea elchem@yonsei.ac.kr., Nimbalkar AS; Korea Research Institute of Chemical Technology Yusong-gu Republic of Korea.; University of Science and Technology Daejeon Republic of Korea., Eum JH; Electrochemical Energy Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul-03722 Republic of Korea elchem@yonsei.ac.kr., Kim H; Electrochemical Energy Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul-03722 Republic of Korea elchem@yonsei.ac.kr.
المصدر: RSC advances [RSC Adv] 2020 Nov 04; Vol. 10 (66), pp. 40092-40105. Date of Electronic Publication: 2020 Nov 04 (Print Publication: 2020).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 101581657 Publication Model: eCollection Cited Medium: Internet ISSN: 2046-2069 (Electronic) Linking ISSN: 20462069 NLM ISO Abbreviation: RSC Adv Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge [England] : Royal Society of Chemistry, [2011]-
مستخلص: In the present study, we have developed a composite electrode of MSNT using a simple and scalable two-step scheme to synthesize a composite electrode material comprising MoSe 2 /multiwalled carbon nanotubes (MoSe 2 /MWCNTs) for supercapacitor applications. First, a MWCNT thin film was deposited on a stainless steel substrate by using a "dip and dry" coating technique. Subsequently, MoSe 2 was deposited onto the MWCNT thin film using the successive ionic layer adsorption and reaction method. The lichen-like growth of MoSe 2 on the MWCNT network provided dual charge storage and an effective ion transfer path. The composite electrode of MSNT has been studied systematically with different electrolytes and concentrations of electrolyte. As a result, the MoSe 2 /MWCNT (MSNT) electrode exhibited excellent electrochemical properties such as a specific capacity of 192 mA h g -1 and a capacitance retention of 88% after 2000 cycles in 1 M LiCl electrolyte. The results demonstrated the huge potential of the MSNT composite electrode for practical application in supercapacitors. The aqueous symmetric cell fabricated using the MSNT composite as both the anode and cathode showed an energy density of 17.9 W h kg -1 . Additionally, the energy density improved by designing an asymmetric device of MSNT//MnO 2 and notably, it reveals two-fold improvement in the energy density compared to a symmetric MSNT cell. The MSNT//MnO 2 -based asymmetric cell exhibited a maximum specific capacitance of 112 F g -1 with a high energy density of 35.6 W h kg -1 .
Competing Interests: There are no conflicts of interest to declare.
(This journal is © The Royal Society of Chemistry.)
References: ChemSusChem. 2017 Apr 22;10(8):1771-1782. (PMID: 28158923)
Angew Chem Int Ed Engl. 2003 Sep 5;42(34):4092-6. (PMID: 12973779)
Chem Soc Rev. 2011 Mar;40(3):1697-721. (PMID: 21173973)
J Nanosci Nanotechnol. 2014 Sep;14(9):7250-4. (PMID: 25924398)
J Colloid Interface Sci. 2019 Feb 1;535:169-175. (PMID: 30293042)
ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2604-10. (PMID: 24513016)
Chemistry. 2014 Mar 10;20(11):3084-8. (PMID: 24522895)
Dalton Trans. 2015 Sep 21;44(35):15491-8. (PMID: 26239099)
Nat Mater. 2011 Oct 23;10(12):936-41. (PMID: 22019946)
J Colloid Interface Sci. 2017 Mar 15;490:147-153. (PMID: 27898333)
ACS Nano. 2019 Sep 24;13(9):10612-10621. (PMID: 31461617)
Small. 2013 Sep 9;9(17):2905-10. (PMID: 23589515)
Chem Soc Rev. 2018 Mar 21;47(6):2065-2129. (PMID: 29399689)
Nat Chem. 2013 Apr;5(4):263-75. (PMID: 23511414)
ACS Nano. 2013 Apr 23;7(4):2898-926. (PMID: 23464873)
Chem Soc Rev. 2015 Apr 7;44(7):1777-90. (PMID: 25623995)
Chem Soc Rev. 2013 Mar 7;42(5):1934-46. (PMID: 23344899)
Nat Nanotechnol. 2012 Aug;7(8):494-8. (PMID: 22706698)
ACS Appl Mater Interfaces. 2018 May 16;10(19):16636-16649. (PMID: 29687716)
J Colloid Interface Sci. 2016 May 1;469:318-324. (PMID: 26901380)
Nat Nanotechnol. 2011 Mar;6(3):147-50. (PMID: 21278752)
Chem Soc Rev. 2015 May 7;44(9):2713-31. (PMID: 25292209)
ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3176-88. (PMID: 24548054)
Dalton Trans. 2016 Jun 21;45(23):9646-53. (PMID: 27220807)
ChemSusChem. 2017 Jul 10;10(13):2742-2750. (PMID: 28523755)
Chem Rev. 2013 May 8;113(5):3766-98. (PMID: 23286380)
Nat Nanotechnol. 2012 Aug;7(8):490-3. (PMID: 22706701)
Small. 2019 Jan;15(1):e1804104. (PMID: 30609283)
Angew Chem Int Ed Engl. 2006 Oct 20;45(41):6896-9. (PMID: 17001732)
تواريخ الأحداث: Date Created: 20220506 Latest Revision: 20220716
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC9057468
DOI: 10.1039/d0ra06952c
PMID: 35520853
قاعدة البيانات: MEDLINE
الوصف
تدمد:2046-2069
DOI:10.1039/d0ra06952c