دورية أكاديمية

Review and update of the concept of embolic stroke of undetermined source.

التفاصيل البيبلوغرافية
العنوان: Review and update of the concept of embolic stroke of undetermined source.
المؤلفون: Diener HC; Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE) Medical Faculty of the University Duisburg-Essen, Essen, Germany. hans.diener@uk-essen.de., Easton JD; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA., Hart RG; Population Health Research Institute/McMaster University, David Braley Cardiac, Vascular and Stroke Research Institute (DBCVSRI), Hamilton, Ontario, Canada., Kasner S; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA., Kamel H; Clinical and Translational Neuroscience Unit, Department of Neurology and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA., Ntaios G; Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
المصدر: Nature reviews. Neurology [Nat Rev Neurol] 2022 Aug; Vol. 18 (8), pp. 455-465. Date of Electronic Publication: 2022 May 10.
نوع المنشور: Journal Article; Review; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101500072 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1759-4766 (Electronic) Linking ISSN: 17594758 NLM ISO Abbreviation: Nat Rev Neurol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: Embolic Stroke* , Intracranial Embolism*/complications , Ischemic Stroke* , Stroke*/diagnosis , Stroke*/drug therapy , Stroke*/etiology, Administration, Oral ; Anticoagulants/therapeutic use ; Aspirin ; Humans ; Platelet Aggregation Inhibitors/therapeutic use
مستخلص: Ischaemic strokes have traditionally been classified according to the TOAST criteria, in which strokes with unclear aetiology are classified as cryptogenic strokes. However, the definition of cryptogenic stroke did not meet the operational criteria necessary to define patient populations for randomized treatment trials. To address this problem, the concept of embolic stroke of undetermined source (ESUS) was developed and published in 2014. A hypothesis that underpinned this concept was that most strokes in patients with ESUS are caused by embolic events, perhaps many cardioembolic, and that anticoagulation would prevent secondary ischaemic events. On this basis, two large randomized trials were conducted to compare the non-vitamin K antagonist oral anticoagulants (NOACs) dabigatran and rivaroxaban with aspirin. Neither NOAC was superior to aspirin in these trials, although subgroups of patients with ESUS seemed to benefit specifically from anticoagulation or antiplatelet therapy. The neutral results of the trials of anticoagulation and insights into ESUS from research conducted since the concept was introduced warrant reassessment of the ESUS construct as a research concept and a treatment target. In this Review, we discuss the evidence produced since the concept of ESUS was introduced, and propose updates to the criteria and diagnostic algorithm in light of the latest knowledge.
(© 2022. Springer Nature Limited.)
References: Hart, R. G. et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 13, 429–438 (2014). This article is the original description and definition of the concept of ESUS. (PMID: 2464687510.1016/S1474-4422(13)70310-7)
Sacco, R. L. et al. Infarcts of undetermined cause: the NINCDS Stroke Data Bank. Ann. Neurol. 25, 382–390 (1989). (PMID: 271253310.1002/ana.410250410)
Adams, H. P. Jr et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24, 35–41 (1993). (PMID: 767818410.1161/01.STR.24.1.35)
Adams, H. P. Jr & Biller, J. Classification of subtypes of ischemic stroke: history of the trial of org 10172 in acute stroke treatment classification. Stroke 46, e114–e117 (2015). (PMID: 2581319210.1161/STROKEAHA.114.007773)
Kunitz, S. C. et al. The pilot Stroke Data Bank: definition, design, and data. Stroke 15, 740–746 (1984). (PMID: 646407010.1161/01.STR.15.4.740)
Foulkes, M. A., Wolf, P. A., Price, T. R., Mohr, J. P. & Hier, D. B. The Stroke Data Bank: design, methods, and baseline characteristics. Stroke 19, 547–554 (1988). (PMID: 336358610.1161/01.STR.19.5.547)
Mohr, J. P. et al. The Harvard Cooperative Stroke Registry: a prospective registry. Neurology 28, 754–762 (1978). (PMID: 56729110.1212/WNL.28.8.754)
Michel, P. et al. The Acute STroke Registry and Analysis of Lausanne (ASTRAL): design and baseline analysis of an ischemic stroke registry including acute multimodal imaging. Stroke 41, 2491–2498 (2010). (PMID: 2093015210.1161/STROKEAHA.110.596189)
Ntaios, G. Embolic stroke of undetermined source: JACC review topic of the week. J. Am. Coll. Cardiol. 75, 333–340 (2020). (PMID: 3197687210.1016/j.jacc.2019.11.024)
Hart, R. G., Catanese, L., Perera, K. S., Ntaios, G. & Connolly, S. J. Embolic stroke of undetermined source: a systematic review and clinical update. Stroke 48, 867–872 (2017). (PMID: 2826501610.1161/STROKEAHA.116.016414)
Ntaios, G. et al. Embolic strokes of undetermined source in the Athens Stroke Registry: an outcome analysis. Stroke 46, 2087–2093 (2015). (PMID: 2615979510.1161/STROKEAHA.115.009334)
Ntaios, G. et al. Embolic strokes of undetermined source in the Athens Stroke Registry: a descriptive analysis. Stroke 46, 176–181 (2015). (PMID: 2537842910.1161/STROKEAHA.114.007240)
de la Riva, P. et al. Nontraditional lipid variables predict recurrent brain ischemia in embolic stroke of undetermined source. J. Stroke Cerebrovasc. Dis. 26, 1670–1677 (2017). (PMID: 2841231810.1016/j.jstrokecerebrovasdis.2017.03.024)
Iwata, T. et al. Features of patients aged 80 years or older with embolic stroke of undetermined source. J. Stroke Cerebrovasc. Dis. 28, 251–255 (2019). (PMID: 3052921910.1016/j.jstrokecerebrovasdis.2018.09.039)
Jalini, S. et al. Atrial cardiopathy in patients with embolic strokes of unknown source and other stroke etiologies. Neurology 92, e288–e294 (2019). (PMID: 3051855610.1212/WNL.0000000000006748)
Piffer, S. et al. Different clinical phenotypes of embolic stroke of undetermined source: a subgroup analysis of 86 patients. J. Stroke Cerebrovasc. Dis. 27, 3578–3586 (2018). (PMID: 3031825810.1016/j.jstrokecerebrovasdis.2018.08.029)
Siegler, J. E. et al. Prevalence of nonstenotic carotid plaque in stroke due to atrial fibrillation compared to embolic stroke of undetermined source. J. Stroke Cerebrovasc. Dis. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.07.005 (2019). (PMID: 10.1016/j.jstrokecerebrovasdis.2019.07.005318433516765413)
Takasugi, J. et al. Detection of left ventricular thrombus by cardiac magnetic resonance in embolic stroke of undetermined source. Stroke 48, 2434–2440 (2017). (PMID: 2881886310.1161/STROKEAHA.117.018263)
Umemura, T. et al. Importance of finding embolic sources for patients with embolic stroke of undetermined source. J. Stroke Cerebrovasc. Dis. 28, 1810–1815 (2019). (PMID: 3109732610.1016/j.jstrokecerebrovasdis.2019.04.022)
Lattanzi, S. et al. The P-wave terminal force in embolic strokes of undetermined source. J. Neurol. Sci. 375, 175–178 (2017). (PMID: 2832012410.1016/j.jns.2017.01.063)
Bembenek, J. P., Karlinski, M. A., Kurkowska-Jastrzebska, I. & Czlonkowska, A. Embolic strokes of undetermined source in a cohort of Polish stroke patients. Neurol. Sci. 39, 1041–1047 (2018). (PMID: 29556872596649310.1007/s10072-018-3322-5)
Chua, S.-K. et al. Prognostic impact of renal dysfunction on embolic stroke of undetermined source–role beyond CHA2DS2-VASc score: results from Taiwan Stroke Registry. Eur. J. Neurol. 28, 1253–1264 (2021). (PMID: 3327774410.1111/ene.14662)
Chen, J., Gao, F. & Liu, W. Atrial cardiopathy in embolic stroke of undetermined source. Brain Behav. 11, e02160 (2021). (PMID: 33942558821392510.1002/brb3.2160)
Kamran, S. et al. Left heart factors in embolic stroke of undetermined source in a multiethnic Asian and North African cohort. J. Am. Heart Assoc. 9, e016534 (2020). (PMID: 32750304779227610.1161/JAHA.120.016534)
Grifoni, E. et al. Age-related burden and characteristics of embolic stroke of undetermined source in the real world clinical practice. J. Thromb. Thrombolysis 49, 75–85 (2020). (PMID: 3149484410.1007/s11239-019-01951-5)
Kiyuna, F. et al. Association of embolic sources with cause-specific functional outcomes among adults with cryptogenic stroke. JAMA Netw. Open 1, e182953 (2018). (PMID: 30646186632451010.1001/jamanetworkopen.2018.2953)
Lee, Y. K., Gwak, B. C., Yoon, B. A., Kim, D. H. & Cha, J. K. Atrial cardiopathy biomarkers and MRI-based infarct patterns in patients with embolic strokes of undetermined source. J. Stroke Cerebrovasc. Dis. 30, 105933 (2021). (PMID: 3415766810.1016/j.jstrokecerebrovasdis.2021.105933)
Tsivgoulis, G. et al. Incidence, characteristics and outcomes in patients with embolic stroke of undetermined source: a population-based study. J. Neurol. Sci. 401, 5–11 (2019). (PMID: 3098670310.1016/j.jns.2019.04.008)
Li, L. et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol. 14, 903–913 (2015). (PMID: 26227434571461610.1016/S1474-4422(15)00132-5)
Merkler, A. E. et al. Association between troponin levels and embolic stroke of undetermined source. J. Am. Heart Assoc. https://doi.org/10.1161/jaha.117.005905 (2017). (PMID: 10.1161/jaha.117.005905289397035634259)
Kasner, S. E. et al. Characterization of patients with embolic strokes of undetermined source in the NAVIGATE ESUS randomized trial. J. Stroke Cerebrovasc. Dis. 27, 1673–1682 (2018). (PMID: 29525076670118310.1016/j.jstrokecerebrovasdis.2018.01.027)
Perera, K. S. et al. Embolic strokes of undetermined source: prevalence and patient features in the ESUS Global Registry. Int. J. Stroke 11, 526–533 (2016). This is a registry study in which the features of patients with ESUS are described. (PMID: 2725647210.1177/1747493016641967)
Martinez-Majander, N. et al. Embolic strokes of undetermined source in young adults: baseline characteristics and long-term outcome. Eur. J. Neurol. 25, 535–541 (2018). (PMID: 2921879010.1111/ene.13540)
Perera, K. S. et al. Frequency and features of embolic stroke of undetermined source in young adults. Eur. Stroke J. 3, 110–116 (2018). (PMID: 31008343646041010.1177/2396987318755585)
Diener, H. C. et al. Design of randomized, double-blind, evaluation in secondary stroke prevention comparing the efficacy and safety of the oral thrombin inhibitor dabigatran etexilate vs. acetylsalicylic acid in patients with embolic stroke of undetermined source (RE-SPECT ESUS). Int. J. Stroke 10, 1309–1312 (2015). (PMID: 2642013410.1111/ijs.12630)
Hart, R. G. et al. Rivaroxaban for secondary stroke prevention in patients with embolic strokes of undetermined source: design of the NAVIGATE ESUS randomized trial. Eur. Stroke J. 1, 146–154 (2016). (PMID: 31008276630124010.1177/2396987316663049)
Diener, H. C. et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N. Engl. J. Med. 380, 1906–1917 (2019). This randomized trial compared dabigatran with aspirin for secondary stroke prevention in patients with ESUS. (PMID: 3109137210.1056/NEJMoa1813959)
Hart, R. G. et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N. Engl. J. Med. 378, 2191–2201 (2018). This randomized trial compared rivaroxaban with aspirin for secondary stroke prevention in patients with ESUS. (PMID: 2976677210.1056/NEJMoa1802686)
Ntaios, G. et al. Age- and sex-specific analysis of patients with embolic stroke of undetermined source. Neurology 89, 532–539 (2017). This article is an analysis of the role of age and sex in patients with ESUS. (PMID: 28687720556295710.1212/WNL.0000000000004199)
Handke, M., Harloff, A., Bode, C. & Geibel, A. Patent foramen ovale and cryptogenic stroke: a matter of age? Semin. Thromb. Hemost. 35, 505–514 (2009). (PMID: 1973904110.1055/s-0029-1234146)
Mikulík, R. et al. Frequency and predictors of major bleeding in patients with embolic strokes of undetermined source: NAVIGATE-ESUS trial. Stroke 51, 2139–2147 (2020). (PMID: 3251758210.1161/STROKEAHA.119.027995)
Geisler, T. et al. Apixaban for treatment of embolic stroke of undetermined source (ATTICUS randomized trial): rationale and study design. Int. J. Stroke 12, 985–990 (2017). This randomized trial compared apixaban with aspirin in patients with ESUS. (PMID: 2788183310.1177/1747493016681019)
Hagen, P. T., Scholz, D. G. & Edwards, W. D. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin. Proc. 59, 17–20 (1984). (PMID: 669442710.1016/S0025-6196(12)60336-X)
Ma, B. et al. Risk of stroke in patients with patent foramen ovale: an updated meta-analysis of observational studies. J. Stroke Cerebrovasc. Dis. 23, 1207–1215 (2014). (PMID: 2449598210.1016/j.jstrokecerebrovasdis.2013.10.018)
Furlan, A. J. et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N. Engl. J. Med. 366, 991–999 (2012). (PMID: 2241725210.1056/NEJMoa1009639)
Carroll, J. D. et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N. Engl. J. Med. 368, 1092–1100 (2013). (PMID: 2351428610.1056/NEJMoa1301440)
Meier, B. et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N. Engl. J. Med. 368, 1083–1091 (2013). (PMID: 2351428510.1056/NEJMoa1211716)
Mas, J. L. et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N. Engl. J. Med. 377, 1011–1021 (2017). (PMID: 2890259310.1056/NEJMoa1705915)
Sondergaard, L. et al. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N. Engl. J. Med. 377, 1033–1042 (2017). (PMID: 2890258010.1056/NEJMoa1707404)
Saver, J. L. et al. Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. N. Engl. J. Med. 377, 1022–1032 (2017). (PMID: 2890259010.1056/NEJMoa1610057)
Lee, P. H. et al. Cryptogenic stroke and high-risk patent foramen ovale: The DEFENSE-PFO trial. J. Am. Coll. Cardiol. 71, 2335–2342 (2018). (PMID: 2954487110.1016/j.jacc.2018.02.046)
Mir, H. et al. Patent foramen ovale closure, antiplatelet therapy or anticoagulation in patients with patent foramen ovale and cryptogenic stroke: a systematic review and network meta-analysis incorporating complementary external evidence. BMJ Open 8, e023761 (2018). This article is a meta-analysis of the randomized trials in which PFO closure plus antithrombotic treatment was compared with antithrombotic therapy alone in patients with cryptogenic stroke. (PMID: 30049703606735010.1136/bmjopen-2018-023761)
Elgendy, A. Y. et al. Proposal for updated nomenclature and classification of potential causative mechanism in patent foramen ovale-associated stroke. JAMA Neurol. 77, 878–886 (2020). (PMID: 3228201610.1001/jamaneurol.2020.0458)
Kent, D. M. et al. Heterogeneity of treatment effects in an analysis of pooled individual patient data from randomized trials of device closure of patent foramen ovale after stroke. JAMA 326, 2277–2286 (2021). This article introduces a new classification system to assign possible causality in patients with cryptogenic stroke and PFO. (PMID: 34905030867223110.1001/jama.2021.20956)
Diener, H.-C. et al. Dabigatran or aspirin after embolic stroke of undetermined source in patients with patent foramen ovale. Stroke 52, 1065–1068 (2021). (PMID: 3350419010.1161/STROKEAHA.120.031237)
Kasner, S. E. et al. Rivaroxaban or aspirin for patent foramen ovale and embolic stroke of undetermined source: a prespecified subgroup analysis from the NAVIGATE ESUS trial. Lancet Neurol. 17, 1053–1060 (2018). (PMID: 30274772666261310.1016/S1474-4422(18)30319-3)
Sagris, D. et al. Antithrombotic treatment in cryptogenic stroke patients with patent foramen ovale: systematic review and meta-analysis. Stroke 50, 3135–3140 (2019). (PMID: 3154779710.1161/STROKEAHA.119.026512)
Ntaios, G., Wintermark, M. & Michel, P. Supracardiac atherosclerosis in embolic stroke of undetermined source: the underestimated source. Eur. Heart J. 42, 1789–1796 (2020). (PMID: 10.1093/eurheartj/ehaa218)
Ay, H. et al. A computerized algorithm for etiologic classification of ischemic stroke: the causative classification of stroke system. Stroke 38, 2979–2984 (2007). (PMID: 1790138110.1161/STROKEAHA.107.490896)
Ay, H. et al. An evidence-based causative classification system for acute ischemic stroke. Ann. Neurol. 58, 688–697 (2005). (PMID: 1624034010.1002/ana.20617)
Amarenco, P. et al. The ASCOD phenotyping of ischemic stroke (updated ASCO phenotyping). Cerebrovasc. Dis. 36, 1–5 (2013). (PMID: 2389974910.1159/000352050)
Ntaios, G. et al. Data-driven machine-learning analysis of potential embolic sources in embolic stroke of undetermined source. Eur. J. Neurol. 28, 192–201 (2020). (PMID: 3291830510.1111/ene.14524)
Ntaios, G. et al. Aortic arch atherosclerosis in patients with embolic stroke of undetermined source: an exploratory analysis of the NAVIGATE ESUS trial. Stroke 50, 3184–3190 (2019). (PMID: 3152612310.1161/STROKEAHA.119.025813)
Bentsen, L. et al. Vascular pathology in the extracranial vertebral arteries in patients with acute ischemic stroke. Cerebrovasc. Dis. Extra 4, 19–27 (2014). (PMID: 24575111393468310.1159/000357663)
Ntaios, G. et al. Efficacy and safety of rivaroxaban versus aspirin in embolic stroke of undetermined source and carotid atherosclerosis. Stroke 50, 2477–2485 (2019). (PMID: 3140197110.1161/STROKEAHA.119.025168)
Sun, P. et al. Intracranial atherosclerosis burden and stroke recurrence for symptomatic intracranial artery stenosis (sICAS). Aging Dis. 9, 1096–1102 (2018). (PMID: 30574421628475510.14336/AD.2018.0301)
Ntaios, G. et al. Potential embolic sources and outcomes in embolic stroke of undetermined source in the NAVIGATE-ESUS trial. Stroke 51, 1797–1804 (2020). (PMID: 3229550910.1161/STROKEAHA.119.028669)
Ntaios, G. et al. Prevalence and overlap of potential embolic sources in patients with embolic stroke of undetermined source. J. Am. Heart Assoc. 8, e012858 (2019). (PMID: 31364451676162810.1161/JAHA.119.012858)
Ntaios, G. & Hart, R. G. Embolic stroke. Circulation 136, 2403–2405 (2017). (PMID: 2925512110.1161/CIRCULATIONAHA.117.030509)
Saba, L. et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol. 18, 559–572 (2019). (PMID: 3095437210.1016/S1474-4422(19)30035-3)
Eto, F. et al. Atherosclerotic components in thrombi retrieved by thrombectomy for internal carotid artery occlusion due to large artery atherosclerosis: a case report. Front Neurol. 12, 670610 (2021). (PMID: 34122316819406510.3389/fneur.2021.670610)
Rajalingam, R., Jalini, S. & Pikula, A. Extracranial and intracranial non-stenotic carotid atherosclerotic plaques in ESUS patients [abstract]. Neurology 90 (Suppl. 15), P5.221 (2018).
Kamel, H. et al. Cryptogenic stroke and nonstenosing intracranial calcified atherosclerosis. J. Stroke Cerebrovasc. Dis. 26, 863–870 (2017). (PMID: 2788779110.1016/j.jstrokecerebrovasdis.2016.10.035)
Gupta, A. et al. Association between nonstenosing carotid artery plaque on MR angiography and acute ischemic stroke. JACC Cardiovasc. Imaging 9, 1228–1229 (2016). (PMID: 2689768910.1016/j.jcmg.2015.12.004)
Singh, N., Moody, A. R., Panzov, V. & Gladstone, D. J. Carotid intraplaque hemorrhage in patients with embolic stroke of undetermined source. J. Stroke Cerebrovasc. Dis. 27, 1956–1959 (2018). (PMID: 2957175410.1016/j.jstrokecerebrovasdis.2018.02.042)
Hirunagi, T., Miwa, S. & Katsuno, M. Nonstenotic carotid plaque in patients with anterior circulation embolic stroke of undetermined source. Brain Nerve 70, 1295–1299 (2018). (PMID: 30416123)
Komatsu, T. et al. Large but nonstenotic carotid artery plaque in patients with a history of embolic stroke of undetermined source. Stroke 49, 3054–3056 (2018). (PMID: 3057140110.1161/STROKEAHA.118.022986)
Coutinho, J. M. et al. Nonstenotic carotid plaque on CT angiography in patients with cryptogenic stroke. Neurology 87, 665–672 (2016). (PMID: 27412144499916310.1212/WNL.0000000000002978)
Freilinger, T. M. et al. Prevalence of nonstenosing, complicated atherosclerotic plaques in cryptogenic stroke. JACC Cardiovasc. Imaging 5, 397–405 (2012). (PMID: 2249832910.1016/j.jcmg.2012.01.012)
Hyafil, F. et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur. J. Nucl. Med. Mol. Imaging 43, 270–279 (2016). (PMID: 2643336710.1007/s00259-015-3201-8)
Buon, R. et al. Carotid ultrasound for assessment of nonobstructive carotid atherosclerosis in young adults with cryptogenic stroke. J. Stroke Cerebrovasc. Dis. 27, 1212–1216 (2018). (PMID: 2930751010.1016/j.jstrokecerebrovasdis.2017.11.043)
Tao, L. et al. Intracranial atherosclerotic plaque as a potential cause of embolic stroke of undetermined source. J. Am. Coll. Cardiol. 77, 680–691 (2021). (PMID: 3357373710.1016/j.jacc.2020.12.015)
Kamtchum-Tatuene, J., Wilman, A., Saqqur, M., Shuaib, A. & Jickling, G. C. Carotid plaque with high-risk features in embolic stroke of undetermined source: systematic review and meta-analysis. Stroke 51, 311–314 (2020). (PMID: 3175261610.1161/STROKEAHA.119.027272)
Fitzgerald, S. et al. Platelet-rich emboli in cerebral large vessel occlusion are associated with a large artery atherosclerosis source. Stroke 50, 1907–1910 (2019). (PMID: 31138084691008110.1161/STROKEAHA.118.024543)
Hart, R. G., Pearce, L. A. & Aguilar, M. I. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann. Intern. Med. 146, 857–867 (2007). (PMID: 1757700510.7326/0003-4819-146-12-200706190-00007)
Diener, H. C. et al. Apixaban versus aspirin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a predefined subgroup analysis from AVERROES, a randomised trial. Lancet Neurol. 11, 225–231 (2012). (PMID: 2230546210.1016/S1474-4422(12)70017-0)
Yang, X. M. et al. Atrial fibrillation known before or detected after stroke share similar risk of ischemic stroke recurrence and death. Stroke 50, 1124–1129 (2019). (PMID: 3100935310.1161/STROKEAHA.118.024176)
Veltkamp, R. et al. Characteristics of recurrent ischemic stroke after embolic stroke of undetermined source: secondary analysis of a randomized clinical trial. JAMA Neurol. 77, 1233–1240 (2020). (PMID: 3262826610.1001/jamaneurol.2020.1995)
Uphaus, T. et al. Development and validation of a score to detect paroxysmal atrial fibrillation after stroke. Neurology 92, e115–e124 (2019). (PMID: 3053079610.1212/WNL.0000000000006727)
Ntaios, G. et al. Identification of patients with embolic stroke of undetermined source and low risk of new incident atrial fibrillation: the AF-ESUS score. Int. J. Stroke 16, 29–38 (2021). (PMID: 3242331710.1177/1747493020925281)
Hsieh, C. Y., Lee, C. H. & Sung, S. F. Development of a novel score to predict newly diagnosed atrial fibrillation after ischemic stroke: the CHASE-LESS score. Atherosclerosis 295, 1–7 (2020). (PMID: 3197249710.1016/j.atherosclerosis.2020.01.003)
Hijazi, Z. et al. The ABC (age, biomarkers, clinical history) stroke risk score: a biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 37, 1582–1590 (2016). This article introduces a score based on biomarkers to predict atrial fibrillation. (PMID: 26920728487556010.1093/eurheartj/ehw054)
Wang, T. J. et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med. 350, 655–663 (2004). (PMID: 1496074210.1056/NEJMoa031994)
Pala, E. et al. B-type natriuretic peptide over N-terminal pro-brain natriuretic peptide to predict incident atrial fibrillation after cryptogenic stroke. Eur. J. Neurol. 28, 540–547 (2021). (PMID: 3304354510.1111/ene.14579)
Wasser, K. et al. Brain natriuretic peptide and discovery of atrial fibrillation after stroke: a subanalysis of the Find-AF(RANDOMISED) trial. Stroke 51, 395–401 (2020). (PMID: 3181335410.1161/STROKEAHA.119.026496)
Svennberg, E. et al. NT-proBNP is a powerful predictor for incident atrial fibrillation–validation of a multimarker approach. Int. J. Cardiol. 223, 74–81 (2016). (PMID: 2754164510.1016/j.ijcard.2016.08.001)
Healey, J. S. et al. Recurrent stroke with rivaroxaban compared with aspirin according to predictors of atrial fibrillation: secondary analysis of the NAVIGATE ESUS randomized clinical trial. JAMA Neurol. 76, 764–773 (2019). (PMID: 30958508658306010.1001/jamaneurol.2019.0617)
Mohr, J. P. et al. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N. Engl. J. Med. 345, 1444–1451 (2001). (PMID: 1179419210.1056/NEJMoa011258)
Longstreth, W. T. Jr et al. Amino terminal pro-B-type natriuretic peptide, secondary stroke prevention, and choice of antithrombotic therapy. Stroke 44, 714–719 (2013). (PMID: 23339958358337510.1161/STROKEAHA.112.675942)
Kamel, H., Okin, P. M., Elkind, M. S. & Iadecola, C. Atrial fibrillation and mechanisms of stroke: time for a new model. Stroke 47, 895–900 (2016). (PMID: 26786114476605510.1161/STROKEAHA.115.012004)
Kamel, H. et al. The AtRial cardiopathy and antithrombotic drugs in prevention after cryptogenic stroke randomized trial: rationale and methods. Int. J. Stroke 14, 207–214 (2019). This randomized trial compared apixaban and aspirin in patients with ESUS and atrial cardiopathy. (PMID: 3019678910.1177/1747493018799981)
Goette, A. et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Heart Rhythm. 14, e3–e40 (2017). (PMID: 2732051510.1016/j.hrthm.2016.05.028)
Sanna, T. et al. Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 370, 2478–2486 (2014). The first randomized study of long-term ECG monitoring in patients with cryptogenic stroke. (PMID: 2496356710.1056/NEJMoa1313600)
Gladstone, D. J. et al. Atrial fibrillation in patients with cryptogenic stroke. N. Engl. J. Med. 370, 2467–2477 (2014). (PMID: 2496356610.1056/NEJMoa1311376)
Wachter, R. et al. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AFRANDOMISED): an open-label randomised controlled trial. Lancet Neurol. 16, 282–290 (2017). (PMID: 2818792010.1016/S1474-4422(17)30002-9)
Sposato, L. A. et al. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol. 14, 377–387 (2015). (PMID: 2574810210.1016/S1474-4422(15)70027-X)
Brambatti, M. et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 129, 2094–2099 (2014). (PMID: 2463388110.1161/CIRCULATIONAHA.113.007825)
Daoud, E. G. et al. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm. 8, 1416–1423 (2011). (PMID: 2169983310.1016/j.hrthm.2011.04.022)
Buck, B. H. et al. Effect of implantable vs prolonged external electrocardiographic monitoring on atrial fibrillation detection in patients with ischemic stroke: the PER DIEM randomized clinical trial. JAMA 325, 2160–2168 (2021). (PMID: 34061146817054510.1001/jama.2021.6128)
Bernstein, R. A. et al. Effect of long-term continuous cardiac monitoring vs usual care on detection of atrial fibrillation in patients with stroke attributed to large- or small-vessel disease: the STROKE-AF randomized clinical trial. JAMA 325, 2169–2177 (2021). (PMID: 34061145817054410.1001/jama.2021.6470)
Gladstone, D. J. et al. Screening for atrial fibrillation in the older population: a randomized clinical trial. JAMA Cardiol. 6, 558–567 (2021). (PMID: 3362546810.1001/jamacardio.2021.0038)
Healey, J. S. et al. Subclinical atrial fibrillation in older patients. Circulation 136, 1276–1283 (2017). (PMID: 2877894610.1161/CIRCULATIONAHA.117.028845)
Connolly, S. J. et al. Apixaban in patients with atrial fibrillation. N. Engl. J. Med. 364, 806–817 (2011). (PMID: 2130965710.1056/NEJMoa1007432)
Rubio Campal, J. M. et al. Detecting atrial fibrillation in patients with an embolic stroke of undetermined source (from the DAF-ESUS registry). Am. J. Cardiol. 125, 409–414 (2020). (PMID: 3178007410.1016/j.amjcard.2019.10.050)
Svendsen, J. H. et al. Implantable loop recorder detection of atrial fibrillation to prevent stroke (the LOOP study): a randomised controlled trial. Lancet 398, 1507–1516 (2021). (PMID: 3446976610.1016/S0140-6736(21)01698-6)
Hindricks, G. et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42, 373–498 (2021). The most recent guidelines for the management of atrial fibrillation. (PMID: 3286050510.1093/eurheartj/ehaa612)
Schnabel, R. B. et al. Searching for atrial fibrillation poststroke: a white paper of the AF-SCREEN international collaboration. Circulation 140, 1834–1850 (2019). (PMID: 3176526110.1161/CIRCULATIONAHA.119.040267)
Ikenouchi, H. et al. Left ventricular abnormality and covert atrial fibrillation in embolic stroke of undetermined source. J. Atheroscler. Thromb. https://doi.org/10.5551/jat.62994 (2021). (PMID: 10.5551/jat.62994343050839252620)
Elkind, M. S. V. Atrial cardiopathy and stroke prevention. Curr. Cardiol. Rep. 20, 103 (2018). (PMID: 3020963510.1007/s11886-018-1053-0)
Kamel, H. et al. Paroxysmal supraventricular tachycardia and the risk of ischemic stroke. Stroke 44, 1550–1554 (2013). (PMID: 23632982395059710.1161/STROKEAHA.113.001118)
Kamel, H. et al. Electrocardiographic left atrial abnormality and risk of stroke: Northern Manhattan Study. Stroke 46, 3208–3212 (2015). (PMID: 26396031462451010.1161/STROKEAHA.115.009989)
Ntaios, G. et al. Supraventricular extrasystoles on standard 12-lead electrocardiogram predict new incident atrial fibrillation after embolic stroke of undetermined source: the AF-ESUS study. J. Stroke Cerebrovasc. Dis. 29, 104626 (2020). (PMID: 3195460510.1016/j.jstrokecerebrovasdis.2019.104626)
Perlepe, K. et al. Left atrial diameter thresholds and new incident atrial fibrillation in embolic stroke of undetermined source. Eur. J. Intern. Med. 75, 30–34 (2020). (PMID: 3195298310.1016/j.ejim.2020.01.002)
Kitsiou, A., Sagris, D., Schäbitz, W. R. & Ntaios, G. Validation of the AF-ESUS score to identify patients with embolic stroke of undetermined source and low risk of device-detected atrial fibrillation. Eur. J. Intern. Med. 89, 135–136 (2021). (PMID: 3395242510.1016/j.ejim.2021.04.003)
Navi, B. B. et al. Risk of arterial thromboembolism in patients with cancer. J. Am. Coll. Cardiol. 70, 926–938 (2017). (PMID: 28818202566756710.1016/j.jacc.2017.06.047)
Navi, B. B. et al. Cancer and embolic stroke of undetermined source. Stroke 52, 1121–1130 (2021). (PMID: 33504187790245510.1161/STROKEAHA.120.032002)
Navi, B. B. et al. Recurrent thromboembolic events after ischemic stroke in patients with cancer. Neurology 83, 26–33 (2014). (PMID: 24850486411417610.1212/WNL.0000000000000539)
Martinez-Majander, N. et al. Rivaroxaban versus aspirin for secondary prevention of ischaemic stroke in patients with cancer: a subgroup analysis of the NAVIGATE ESUS randomized trial. Eur. J. Neurol. 27, 841–848 (2020). (PMID: 3205634610.1111/ene.14172)
Nahab, F. et al. Markers of coagulation and hemostatic activation aid in identifying causes of cryptogenic stroke. Neurology 94, e1892–e1899 (2020). (PMID: 32291293727492110.1212/WNL.0000000000009365)
Patel, K. et al. Anticoagulation therapy reduces recurrent stroke in embolic stroke of undetermined source patients with elevated coagulation markers or severe left atrial enlargement. Front. Neurol. 12, 695378 (2021). (PMID: 34163432821543610.3389/fneur.2021.695378)
Choi, K. H. et al. d-dimer level as a predictor of recurrent stroke in patients with embolic stroke of undetermined source. Stroke 52, 2292–2301 (2021). (PMID: 3397174410.1161/STROKEAHA.120.033217)
Liu, M. et al. The utility of the markers of coagulation and hemostatic activation profile in the management of embolic strokes of undetermined source. J. Stroke Cerebrovasc. Dis. 30, 105592 (2021). (PMID: 3345464710.1016/j.jstrokecerebrovasdis.2020.105592)
Algra, A. & van Gijn, J. Aspirin at any dose above 30 mg offers only modest protection after cerebral ischaemia. J. Neurol. Neurosurg. Psychiatry 60, 197–199 (1996). (PMID: 8708654107380510.1136/jnnp.60.2.197)
Baigent, C. et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373, 1849–1860 (2009). (PMID: 1948221410.1016/S0140-6736(09)60503-1)
Rothwell, P. M. et al. Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke: time-course analysis of randomised trials. Lancet 388, 365–375 (2016). (PMID: 27209146532149010.1016/S0140-6736(16)30468-8)
Ameriso, S. F. et al. Intracranial and systemic atherosclerosis in the NAVIGATE ESUS trial: recurrent stroke risk and response to antithrombotic therapy. J. Stroke Cerebrovasc. Dis. 29, 104936 (2020). (PMID: 3268959410.1016/j.jstrokecerebrovasdis.2020.104936)
Merkler, A. et al. Left ventricular dysfunction among patients with embolic stroke of undetermined source and the effect of rivaroxaban versus aspirin: an exploratory analysis of the NAVIGATE ESUS. JAMA Neurol. 78, 1454–1460 (2021). (PMID: 3469434610.1001/jamaneurol.2021.3828)
Albers, G. W. et al. Reexamination of the embolic stroke of undetermined source concept. Stroke 52, 2715–2722 (2021). (PMID: 3419289810.1161/STROKEAHA.121.035208)
Perera, K. S. et al. Association between low-dose rivaroxaban with or without aspirin and ischemic stroke subtypes: a secondary analysis of the COMPASS trial. JAMA Neurol. 77, 43–48 (2020). (PMID: 3152494110.1001/jamaneurol.2019.2984)
معلومات مُعتمدة: U01NS095869 United States NS NINDS NIH HHS
سلسلة جزيئية: ClinicalTrials.gov NCT01994720; NCT02239120; NCT00991029
المشرفين على المادة: 0 (Anticoagulants)
0 (Platelet Aggregation Inhibitors)
R16CO5Y76E (Aspirin)
تواريخ الأحداث: Date Created: 20220510 Date Completed: 20220802 Latest Revision: 20221113
رمز التحديث: 20231215
DOI: 10.1038/s41582-022-00663-4
PMID: 35538232
قاعدة البيانات: MEDLINE
الوصف
تدمد:1759-4766
DOI:10.1038/s41582-022-00663-4