دورية أكاديمية

Critical Information from High Fidelity Arterial and Venous Pressure Waveforms During Anesthesia and Hemorrhage.

التفاصيل البيبلوغرافية
العنوان: Critical Information from High Fidelity Arterial and Venous Pressure Waveforms During Anesthesia and Hemorrhage.
المؤلفون: Crimmins-Pierce LD; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA., Bonvillain GP; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA., Henry KR; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA., Hayat MA; Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA., Villafranca AA; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA., Stephens SE; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA., Jensen HK; Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA., Sanford JA; Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.; Institute for Digital Health and Innovation, University of Arkansas for Medical Sciences, Little Rock, AR, USA., Wu J; Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA., Sexton KW; Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.; Institute for Digital Health and Innovation, University of Arkansas for Medical Sciences, Little Rock, AR, USA.; Department of Health Policy and Management, University of Arkansas for Medical Sciences, Little Rock, AR, USA.; Department of Pharmacy Practice, University of Arkansas for Medical Sciences, Little Rock, AR, USA., Jensen MO; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA. mojensen@uark.edu.
المصدر: Cardiovascular engineering and technology [Cardiovasc Eng Technol] 2022 Dec; Vol. 13 (6), pp. 886-898. Date of Electronic Publication: 2022 May 11.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101531846 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-4098 (Electronic) Linking ISSN: 1869408X NLM ISO Abbreviation: Cardiovasc Eng Technol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Springer
مواضيع طبية MeSH: Arterial Pressure* , Anesthesia*, Swine ; Animals ; Venous Pressure ; Arteries ; Hemorrhage/chemically induced ; Blood Pressure
مستخلص: Purpose: Peripheral venous pressure (PVP) waveform analysis is a novel, minimally invasive, and inexpensive method of measuring intravascular volume changes. A porcine cohort was studied to determine how venous and arterial pressure waveforms change due to inhaled and infused anesthetics and acute hemorrhage.
Methods: Venous and arterial pressure waveforms were continuously collected, while each pig was under general anesthesia, by inserting Millar catheters into a neighboring peripheral artery and vein. The anesthetic was varied from inhaled to infused, then the pig underwent a controlled hemorrhage. Pearson correlation coefficients between the power of the venous and arterial pressure waveforms at each pig's heart rate frequency were calculated for each variation in the anesthetic, as well as before and after hemorrhage. An analysis of variance (ANOVA) test was computed to determine the significance in changes of the venous pressure waveform means caused by each variation.
Results: The Pearson correlation coefficients between venous and arterial waveforms decreased as anesthetic dosage increased. In an opposing fashion, the correlation coefficients increased as hemorrhage occurred.
Conclusion: Anesthetics and hemorrhage alter venous pressure waveforms in distinctly different ways, making it critical for researchers and clinicians to consider these confounding variables when utilizing pressure waveforms. Further work needs to be done to determine how best to integrate PVP waveforms into clinical decision-making.
(© 2022. The Author(s) under exclusive licence to Biomedical Engineering Society.)
References: Al-Alawi, A. Z., K. R. Henry, L. D. Crimmins, P. C. Bonasso, M. A. Hayat, M. S. Dassinger, et al. Anesthetics affect peripheral venous pressure waveforms and the cross-talk with arterial pressure. J Clin Monit Comput. 2021. https://doi.org/10.1007/s10877-020-00632-6 . (PMID: 10.1007/s10877-020-00632-6)
Alian, A. A., N. J. Galante, N. S. Stachenfeld, D. G. Silverman, and K. H. Shelley. Impact of lower body negative pressure induced hypovolemia on peripheral venous pressure waveform parameters in healthy volunteers. Physiol Meas. 35(7):1509–1520, 2014. https://doi.org/10.1088/0967-3334/35/7/1509 . (PMID: 10.1088/0967-3334/35/7/1509)
Alvis, B. D., R. McCallister, M. Polcz, J. L. O. Lima, J. H. Sobey, D. R. Brophy, et al. Non-Invasive Venous waveform Analysis (NIVA) for monitoring blood loss in human blood donors and validation in a porcine hemorrhage model. J Clin Anesth.61:109664, 2020. https://doi.org/10.1016/j.jclinane.2019.109664 . (PMID: 10.1016/j.jclinane.2019.109664)
Alvis, B. D., M. Polcz, J. H. Huston, T. S. Hopper, P. Leisy, K. Mishra, et al. Observational study of noninvasive venous waveform analysis to assess intracardiac filling pressures during right heart catheterization. J Card Fail. 26(2):136–141, 2020. https://doi.org/10.1016/j.cardfail.2019.09.009 . (PMID: 10.1016/j.cardfail.2019.09.009)
Alvis, B. D., M. Polcz, M. Miles, D. Wright, M. Shwetar, P. Leisy, et al. Non-invasive venous waveform analysis (NIVA) for volume assessment in patients undergoing hemodialysis: an observational study. BMC Nephrol. 21(1):194, 2020. https://doi.org/10.1186/s12882-020-01845-2 . (PMID: 10.1186/s12882-020-01845-2)
Bonasso, P. C., M. S. Dassinger, M. O. Jensen, S. D. Smith, J. M. Burford, and K. W. Sexton. Optimizing peripheral venous pressure waveforms in an awake pediatric patient by decreasing signal interference. J Clin Monit Comput. 32(6):1149–1153, 2018. https://doi.org/10.1007/s10877-018-0124-5 . (PMID: 10.1007/s10877-018-0124-5)
Bonasso, P. C., K. W. Sexton, M. A. Hayat, J. Wu, H. K. Jensen, M. O. Jensen, et al. Venous physiology predicts dehydration in the pediatric population. J Surg Res. 238:232–239, 2019. https://doi.org/10.1016/j.jss.2019.01.036 . (PMID: 10.1016/j.jss.2019.01.036)
Chang, D., P. J. Leisy, J. H. Sobey, S. K. Reddy, C. Brophy, B. D. Alvis, et al. Physiology and clinical utility of the peripheral venous waveform. JRSM Cardiovasc Dis. 9:2048004020970038, 2020. https://doi.org/10.1177/2048004020970038 . (PMID: 10.1177/2048004020970038)
Chaudhry, R., J. H. Miao, and A. Rehman. Physiology, Cardiovascular. Treasure Island: StatPearls, 2020.
Donley, E. R., Loyd JW.. Hemorrhage, and Control. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2020.
Esper, S. A., and M. R. Pinsky. Arterial waveform analysis. Best Pract Res Clin Anaesthesiol. 28(4):363–380, 2014. https://doi.org/10.1016/j.bpa.2014.08.002 . (PMID: 10.1016/j.bpa.2014.08.002)
Gelman, S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 108(4):735–748, 2008. https://doi.org/10.1097/ALN.0b013e3181672607 . (PMID: 10.1097/ALN.0b013e3181672607)
Hocking, K. M., B. Sileshi, F. J. Baudenbacher, R. B. Boyer, K. L. Kohorst, C. M. Brophy, et al. Peripheral venous waveform analysis for detecting hemorrhage and iatrogenic volume overload in a porcine model. Shock. 46(4):447–452, 2016. https://doi.org/10.1097/SHK.0000000000000615 . (PMID: 10.1097/SHK.0000000000000615)
Holcomb, J. B., B. C. Tilley, S. Baraniuk, E. E. Fox, C. E. Wade, J. M. Podbielski, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 313(5):471–482, 2015. https://doi.org/10.1001/jama.2015.12 . (PMID: 10.1001/jama.2015.12)
Larach, D. R., and H. G. Schuler. Direct vasodilation by sevoflurane, isoflurane, and halothane alters coronary flow reserve in the isolated rat heart. Anesthesiology. 75(2):268–278, 1991. https://doi.org/10.1097/00000542-199108000-00015 . (PMID: 10.1097/00000542-199108000-00015)
Miles, M., B. D. Alvis, K. Hocking, F. Baudenbacher, C. Guth, J. Lindenfeld, et al. Peripheral Intravenous Volume Analysis (PIVA) for quantitating volume overload in patients hospitalized with acute decompensated heart failure-a pilot study. J Card Fail. 24(8):525–532, 2018. https://doi.org/10.1016/j.cardfail.2018.05.003 . (PMID: 10.1016/j.cardfail.2018.05.003)
Niescierenko, M., and R. Bachur. Advances in pediatric dehydration therapy. Curr Opin Pediatr. 25(3):304–309, 2013. https://doi.org/10.1097/MOP.0b013e328360a1bd . (PMID: 10.1097/MOP.0b013e328360a1bd)
One-Way ANOVA- MATLAB & Simulink MathWorks. Accesed 16 Apr 2021.
Pagel, P. S., J. P. Kampine, W. T. Schmeling, and D. C. Warltier. Evaluation of myocardial contractility in the chronically instrumented dog with intact autonomic nervous system function: effects of desflurane and isoflurane. Acta Anaesthesiol Scand. 37(2):203–210, 1993. https://doi.org/10.1111/j.1399-6576.1993.tb03702.x . (PMID: 10.1111/j.1399-6576.1993.tb03702.x)
Paladino, L., R. Sinert, D. Wallace, T. Anderson, K. Yadav, and S. Zehtabchi. The utility of base deficit and arterial lactate in differentiating major from minor injury in trauma patients with normal vital signs. Resuscitation. 77(3):363–368, 2008. https://doi.org/10.1016/j.resuscitation.2008.01.022 . (PMID: 10.1016/j.resuscitation.2008.01.022)
Polcz, M., K. M. Hocking, D. Chang, P. Leisy, J. H. Sobey, J. Huston, et al. A brief report on the effects of vasoactive agents on peripheral venous waveforms in a porcine model. JRSM Cardiovasc Dis. 9:2048004020940857, 2020. https://doi.org/10.1177/2048004020940857 . (PMID: 10.1177/2048004020940857)
Saugel, B., K. Kouz, T. W. L. Scheeren, G. Greiwe, P. Hoppe, S. Romagnoli, and D. de Backer. Cardiac output estimation using pulse wave analysis—physiology, algorithms, and technologies: a narrative review. Br J Anaesthesia. 2021. https://doi.org/10.1016/j.bja.2020.09.049 . (PMID: 10.1016/j.bja.2020.09.049)
Schiller, A. M., J. T. Howard, and V. A. Convertino. The physiology of blood loss and shock: new insights from a human laboratory model of hemorrhage. Exp Biol Med (Maywood). 242(8):874–883, 2017. https://doi.org/10.1177/1535370217694099 . (PMID: 10.1177/1535370217694099)
Sharma, R., Sharma S. Physiology, and Blood Volume. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2020.
Wang, R., J. Wang, H. Yu, X. Wei, C. Yang, and B. Deng. Power spectral density and coherence analysis of Alzheimer’s EEG. Cogn Neurodyn. 9(3):291–304, 2015. https://doi.org/10.1007/s11571-014-9325-x . (PMID: 10.1007/s11571-014-9325-x)
معلومات مُعتمدة: TL1 TR003109 United States TR NCATS NIH HHS; UL1 TR003107 United States TR NCATS NIH HHS
فهرسة مساهمة: Keywords: Cross-talk between venous and arterial circulations; Hemorrhage; Inhaled anesthetic; Peripheral venous pressure
تواريخ الأحداث: Date Created: 20220511 Date Completed: 20221216 Latest Revision: 20230125
رمز التحديث: 20230127
DOI: 10.1007/s13239-022-00624-4
PMID: 35545752
قاعدة البيانات: MEDLINE
الوصف
تدمد:1869-4098
DOI:10.1007/s13239-022-00624-4