دورية أكاديمية

Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats.

التفاصيل البيبلوغرافية
العنوان: Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats.
المؤلفون: Catalão CHR; Department of Neurosciences and Behavioral Sciences of Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil. caique@usp.br.; Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, CEP 14049-900, Brasil. caique@usp.br., de Oliveira Souza A; Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil., Santos-Junior NN; Department of Neurosciences and Behavioral Sciences of Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil., da Costa LHA; Department of Neurosciences and Behavioral Sciences of Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil., Dos Santos JR; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil., Alberici LC; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil., Rocha MJA; Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
المصدر: Molecular and cellular biochemistry [Mol Cell Biochem] 2022 Nov; Vol. 477 (11), pp. 2657-2667. Date of Electronic Publication: 2022 May 23.
نوع المنشور: Journal Article; Randomized Controlled Trial, Veterinary
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Springer
Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
مواضيع طبية MeSH: Sepsis*/drug therapy , Simvastatin*/pharmacology, Animals ; Rats ; Cytokines/metabolism ; Disease Models, Animal ; Gliosis ; Survivors
مستخلص: Sepsis causes overproduction of inflammatory cytokines, organ dysfunction, and cognitive impairment in survivors. In addition to inflammation, metabolic changes occur according to the stage and severity of the disease. Understanding the role and place of metabolic disturbances in the pathophysiology of sepsis is essential to evaluate the framework of septic patients, predict the syndrome progress, and define the treatment strategies. We investigated the effect of simvastatin on the disease time course and on metabolic alterations, especially with respect to their possible consequences in the CNS of surviving rats. The animals of this study were weighed daily and followed for 10 days to determine the survival rate. In the first experiment, control or cecal ligation and puncture (CLP)-animals were randomized in 24 h, 48 h, and 10 days after septic induction, for bacterial load determination and quantification of cytokines. In the second experiment, control or CLP-animals were treated or not with simvastatin and randomized in the same three time points for cytokines quantification and assessment of their body metabolism and locomotor activity (at 48 h and 10 days), as well as the evaluation of cytoarchitecture and astrogliosis (at 10 days). The CLP-rats treated with simvastatin showed a reduction in plasma cytokines and improvement in metabolic parameters and locomotor activity, followed by minor alterations compatible with apoptosis and astrogliosis in the hippocampus and prefrontal cortex. These results suggest that the anti-inflammatory effect of simvastatin plays a crucial role in restoring energy production, maintaining a hypermetabolic state necessary for the recovery and survival of these CLP-rats.
(© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Markwart R, Saito H, Harder T et al (2020) Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med 46:1536–1551. (PMID: 32591853738145510.1007/s00134-020-06106-2)
Fleischmann C, Scherag A, Adhikari NK et al (2016) Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193:259–272. (PMID: 2641429210.1164/rccm.201504-0781OC)
Liu V, Escobar GJ, Greene JD et al (2014) Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312:90–92. (PMID: 2483835510.1001/jama.2014.5804)
Torio CM, Moore BJ (2016) National inpatient hospital costs: the most expensive conditions by payer, 2013. NIH.
Santos-Junior NN, Catalão CHR, Costa LHA et al (2018) Experimental sepsis induces sustained inflammation and acetylcholinesterase activity impairment in the hypothalamus. J Neuroimmunol 324:143–148. (PMID: 3019008610.1016/j.jneuroim.2018.08.013)
Catalão CHR, Santos-Junior NN, da Costa LHA et al (2020) Simvastatin prevents long-term cognitive deficits in sepsis survivor rats by reducing neuroinflammation and neurodegeneration. Neurotox Res 38:871–886. (PMID: 3252438010.1007/s12640-020-00222-z)
Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA (2009) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 4:31–36. (PMID: 19131954275422610.1038/nprot.2008.214)
Ebong S, Call D, Nemzek J, Bolgos G, Newcomb D, Remick D (1999) Immunopathologic alterations in murine models of sepsis of increasing severity. Infect Immun 67:6603–6610. (PMID: 105697819707310.1128/IAI.67.12.6603-6610.1999)
Englert JA, Rogers AJ (2016) Metabolism, metabolomics, and nutritional support of patients with sepsis. Clin Chest Med 37:321–331. (PMID: 27229648508483910.1016/j.ccm.2016.01.011)
Molloy RG, Mannick JA, Rodrick ML (1993) Cytokines, sepsis and immunomodulation. Br J Surg 80:289–297. (PMID: 847213410.1002/bjs.1800800308)
Irahara T, Sato N, Otake K et al (2018) Alterations in energy substrate metabolism in mice with different degrees of sepsis. J Surg Res 227:44–51. (PMID: 2980486110.1016/j.jss.2018.01.021)
Speakman JR (2013) Measuring energy metabolism in the mouse—theoretical, practical, and analytical considerations. Front Physiol 4:34. (PMID: 23504620359673710.3389/fphys.2013.00034)
Wasyluk W, Zwolak A (2021) Metabolic alterations in sepsis. J Clin Med 10:2412. (PMID: 34072402819784310.3390/jcm10112412)
Granger JI, Ratti PL, Datta SC, Raymond RM, Opp MR (2013) Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain. Psychoneuroendocrinology 38:1047–1057. (PMID: 2314665410.1016/j.psyneuen.2012.10.010)
Reis PA, Alexandre PC, D’Avila JC et al (2017) Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction. Brain Behav Immun 60:293–303. (PMID: 2783304410.1016/j.bbi.2016.11.006)
Catalão CHR, Santos-Júnior NN, da Costa LHA, Souza AO, Alberici LC, Rocha MJA (2017) Brain oxidative stress during experimental sepsis is attenuated by simvastatin administration. Mol Neurobiol 54:7008–7018. (PMID: 2779674210.1007/s12035-016-0218-3)
Reis PA, Estato V, da Silva TI et al (2012) Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria. PLoS Pathog 8:e1003099. (PMID: 23300448353152010.1371/journal.ppat.1003099)
Barone E, Cenini G, Di Domenico F et al (2011) Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res 63:172–180. (PMID: 2119304310.1016/j.phrs.2010.12.007)
Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6(5):358–370. (PMID: 1663942910.1038/nri1839)
Nemzek JA, Xiao HY, Minard AE, Bolgos GL, Remick DG (2004) Humane endpoints in shock research. Shock 21:17–25. (PMID: 1467667910.1097/01.shk.0000101667.49265.fd)
Santos-Junior NN, Costa LHA, Catalão CHR, Kanashiro A, Sharshar T, Rocha MJA (2017) Impairment of osmotic challenge-induced neurohypophyseal hormones secretion in sepsis survivor rats. Pituitary 20:515–521. (PMID: 2858929310.1007/s11102-017-0812-z)
Opal SM, Palardy JE, Parejo N, Jasman RL (2003) Effect of anti-CD14 monoclonal antibody on clearance of Escherichia coli bacteremia and endotoxemia. Crit Care Med 31:929–932. (PMID: 1262700710.1097/01.CCM.0000054870.25767.EE)
Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic, San Diego.
Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211. (PMID: 31954465697022510.1016/S0140-6736(19)32989-7)
Singer M, Deutschman CS, Seymour CW et al (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801–810. (PMID: 26903338496857410.1001/jama.2016.0287)
Cohen J, Vincent JL, Adhikari NK et al (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15:581–614. (PMID: 2593259110.1016/S1473-3099(15)70112-X)
Gonçalves MC, Horewicz VV, Lückemeyer DD, Prudente AS, Assreuy J (2017) Experimental sepsis severity score associated to mortality and bacterial spreading is related to bacterial load and inflammatory profile of different tissues. Inflammation 40:1553–1565. (PMID: 2856749710.1007/s10753-017-0596-3)
Shaver CM, Hauser AR (2004) Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72:6969–6977. (PMID: 1555761952915410.1128/IAI.72.12.6969-6977.2004)
Machado GB, de Assis MC, Leão R et al (2010) ExoU-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock 33:315–321. (PMID: 1954315310.1097/SHK.0b013e3181b2b0f4)
Santos-Junior NN, Catalão CH, Costa LH et al (2018) Alterations in hypothalamic synaptophysin and death markers may be associated with vasopressin impairment in sepsis survivor rats. J Neuroendocrinol 1:e12604. (PMID: 10.1111/jne.12604)
Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304(16):1787–1794. (PMID: 20978258334528810.1001/jama.2010.1553)
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76:16–32. (PMID: 22390970329442610.1128/MMBR.05015-11)
Gharamti A, Samara O, Monzon A et al (2021) Association between cytokine levels, sepsis severity and clinical outcomes in sepsis: a quantitative systematic review protocol. BMJ Open 11:e048476. (PMID: 34373304835428710.1136/bmjopen-2020-048476)
Fajgenbaum DC, June CH (2020) Cytokine storm. N Engl J Med 383:2255–2273. (PMID: 33264547772731510.1056/NEJMra2026131)
Morel J, Hargreaves I, Brealey D et al (2017) Simvastatin pre-treatment improves survival and mitochondrial function in a 3-day fluid-resuscitated rat model of sepsis. Clin Sci (Lond) 131:747–758. (PMID: 10.1042/CS20160802)
Bozza FA, Salluh JI, Japiassu AM et al (2007) Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 11:R49. (PMID: 17448250220647810.1186/cc5783)
van den Berg S, Laman JD, Boon L et al (2013) Distinctive cytokines as biomarkers predicting fatal outcome of severe Staphylococcus aureus bacteremia in mice. PLoS ONE 8:e59107. (PMID: 23520553359282210.1371/journal.pone.0059107)
Polito A, Sonneville R, Guidoux C et al (2011) Changes in CRH and ACTH synthesis during experimental and human septic shock. PLoS ONE 6:e25905. (PMID: 22073145320783010.1371/journal.pone.0025905)
Mogensen KM, Robinson MK, Casey JD et al (2015) Nutritional status and mortality in the critically ill. Crit Care Med 43:2605–2615. (PMID: 2642759210.1097/CCM.0000000000001306)
Siegel JH, Cerra FB, Coleman B et al (1979) Physiological and metabolic correlations in human sepsis. Invited commentary. Surgery 86:163–193. (PMID: 380033)
Giovannini I, Boldrini G, Castagneto M et al (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. J Parent Enter Nutr 7:226–230. (PMID: 10.1177/0148607183007003226)
Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 303:R459-476. (PMID: 2271880910.1152/ajpregu.00137.2012)
Li A, Mukhopadhyay A (2020) Substrate utilization and energy expenditure pattern in sepsis by indirect calorimetry. Crit Care 24:535. (PMID: 32867825745752210.1186/s13054-020-03245-2)
Fried RC, Bailey PM, Mullen JL, Stein TP, Crosby LO, Buzby GP (1986) Alterations in exogenous substrate metabolism in sepsis. Arch Surg 121:173–178. (PMID: 348494310.1001/archsurg.1986.01400020059007)
Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR (1980) Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg 192:570–580. (PMID: 6775605134700810.1097/00000658-198010000-00015)
Leverve XM (2007) Mitochondrial function and substrate availability. Crit Care Med 35:S454-460. (PMID: 1771339310.1097/01.CCM.0000278044.19217.73)
Wagner AH, Köhler T, Rückschloss U, Just I, Hecker M (2000) Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 20:61–69. (PMID: 1063480110.1161/01.ATV.20.1.61)
Wassmann S, Laufs U, Bäumer AT et al (2001) Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 59:646–654. (PMID: 1117946110.1124/mol.59.3.646)
Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118. (PMID: 15822172269458010.1146/annurev.pharmtox.45.120403.095748)
Wischmeyer PE, San-Millan I (2015) Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care 19(Suppl 3):S6. (PMID: 26728966469914110.1186/cc14724)
Arabi YM, Aldawood AS, Solaiman O (2015) Permissive underfeeding or standard enteral feeding in critical illness. N Engl J Med 373:1175–1176. (PMID: 26376142)
Jovalekic A, Hayman R, Becares N et al (2011) Horizontal biases in rats’ use of three-dimensional space. Behav Brain Res 222:279–288. (PMID: 21419172315756010.1016/j.bbr.2011.02.035)
Jedidi-Ayoub S, Mishchanchuk K, Liu A, Renaudineau S, Duvelle É, Grieves RM (2021) Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation. Anim Cogn 24:133–163. (PMID: 3295934410.1007/s10071-020-01432-w)
Barichello T, Generoso JS, Collodel A, Petronilho F, Dal-Pizzol F (2021) The blood–brain barrier dysfunction in sepsis. Tissue Barriers 9:1840912. (PMID: 3331963410.1080/21688370.2020.1840912)
Singer BH, Newstead MW, Zeng X et al (2016) Cecal ligation and puncture results in long-term central nervous system myeloid inflammation. PLoS ONE 11:e0149136. (PMID: 26862765474912710.1371/journal.pone.0149136)
Michels M, Abatti MR, Ávila P et al (2020) Characterization and modulation of microglial phenotypes in an animal model of severe sepsis. J Cell Mol Med 24:88–97. (PMID: 3165449310.1111/jcmm.14606)
Michels M, Abatti M, Vieira A et al (2020) Modulation of microglial phenotypes improves sepsis-induced hippocampus-dependent cognitive impairments and decreases brain inflammation in an animal model of sepsis. Clin Sci (Lond) 134:765–776. (PMID: 10.1042/CS20191322)
Tian M, Qingzhen L, Zhiyang Y et al (2019) Attractylone attenuates sepsis-associated encephalopathy and cognitive dysfunction by inhibiting microglial activation and neuroinflammation. J Cell Biochem. https://doi.org/10.1002/jcb.27983. (PMID: 10.1002/jcb.27983317737986771484)
Pan S, Wu Y, Pei L et al (2018) BML-111 Reduces neuroinflammation and cognitive impairment in mice with sepsis via the SIRT1/NF-κB signaling pathway. Front Cell Neurosci 12:267. (PMID: 30186119611093310.3389/fncel.2018.00267)
Zhuo Y, Zhang S, Li C, Yang L, Gao H, Wang X (2018) Resolvin D1 promotes SIRT1 expression to counteract the activation of STAT3 and NF-κB in mice with septic-associated lung injury. Inflammation 41:1762–1771. (PMID: 3001423110.1007/s10753-018-0819-2)
Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 18:406–414. (PMID: 3079598710.1016/S1474-4422(18)30490-3)
Liddelow SA, Guttenplan KA, Clarke LE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. (PMID: 28099414540489010.1038/nature21029)
معلومات مُعتمدة: 2017/12462-0 Fundação de Amparo à Pesquisa do Estado de São Paulo; Finance Code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Cytokines; Experimental sepsis; Glia; HMG-CoA inhibitors; Metabolic disorders; Metabolism
المشرفين على المادة: 0 (Cytokines)
AGG2FN16EV (Simvastatin)
تواريخ الأحداث: Date Created: 20220523 Date Completed: 20221103 Latest Revision: 20221103
رمز التحديث: 20231215
DOI: 10.1007/s11010-022-04463-8
PMID: 35604517
قاعدة البيانات: MEDLINE