دورية أكاديمية

Shoaling guppies evade predation but have deadlier parasites.

التفاصيل البيبلوغرافية
العنوان: Shoaling guppies evade predation but have deadlier parasites.
المؤلفون: Walsman JC; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA. walsmanjason@gmail.com., Janecka MJ; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA., Clark DR; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA., Kramp RD; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA., Rovenolt F; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA., Patrick R; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA., Mohammed RS; Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.; Biology Department, Thompson Biology Lab, Williams College, Williamstown, MA, USA., Konczal M; Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland., Cressler CE; School of Biological Sciences, University of Nebraska, Lincoln, NE, USA., Stephenson JF; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
المصدر: Nature ecology & evolution [Nat Ecol Evol] 2022 Jul; Vol. 6 (7), pp. 945-954. Date of Electronic Publication: 2022 May 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101698577 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-334X (Electronic) Linking ISSN: 2397334X NLM ISO Abbreviation: Nat Ecol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature
مواضيع طبية MeSH: Parasites* , Poecilia*, Animals ; Predatory Behavior
مستخلص: Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020). (PMID: 32501392724799610.1016/j.envsci.2020.05.017)
Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade‐off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009). (PMID: 10.1111/j.1420-9101.2008.01658.x)
Cressler, C. E., McLeod, D. V., Rozins, C., Van Den Hoogen, J. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016). (PMID: 2630277510.1017/S003118201500092X)
Acevedo, M. A., Dillemuth, F. P., Flick, A. J., Faldyn, M. J. & Elderd, B. D. Virulence‐driven trade‐offs in disease transmission: a meta‐analysis. Evolution 73, 636–647 (2019). (PMID: 3073492010.1111/evo.13692)
Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982). (PMID: 675536710.1017/S0031182000055360)
McKay, B., Ebell, M., Dale, A. P., Shen, Y. & Handel, A. Virulence-mediated infectiousness and activity trade-offs and their impact on transmission potential of influenza patients. Proc. R. Soc. B 287, 20200496 (2020). (PMID: 32396798728735110.1098/rspb.2020.0496)
Bonneaud, C. et al. Experimental evidence for stabilizing selection on virulence in a bacterial pathogen. Evol. Lett. 4, 491–501 (2020). (PMID: 33312685771954510.1002/evl3.203)
De Roode, J. C., Yates, A. J. & Altizer, S. Virulence–transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl Acad. Sci. USA 105, 7489–7494 (2008). (PMID: 18492806239669710.1073/pnas.0710909105)
Fraser, C., Hollingsworth, T. D., Chapman, R., de Wolf, F. & Hanage, W. P. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc. Natl Acad. Sci. USA 104, 17441–17446 (2007). (PMID: 17954909207727510.1073/pnas.0708559104)
Choo, K., Williams, P. D. & Day, T. Host mortality, predation and the evolution of parasite virulence. Ecol. Lett. 6, 310–315 (2003). (PMID: 10.1046/j.1461-0248.2003.00425.x)
Williams, P. D. & Day, T. Interactions between sources of mortality and the evolution of parasite virulence. Proc. R. Soc. B 268, 2331–2337 (2001). (PMID: 11703873108888410.1098/rspb.2001.1795)
Gandon, S., Jansen, V. A. & Van Baalen, M. Host life history and the evolution of parasite virulence. Evolution 55, 1056–1062 (2001). (PMID: 1143064210.1554/0014-3820(2001)055[1056:HLHATE]2.0.CO;2)
Prado, F., Sheih, A., West, J. D. & Kerr, B. Coevolutionary cycling of host sociality and pathogen virulence in contact networks. J. Theor. Biol. 261, 561–569 (2009). (PMID: 1971268710.1016/j.jtbi.2009.08.022)
Herre, E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–1445 (1993). (PMID: 1780127910.1126/science.259.5100.1442)
Boots, M. & Mealor, M. Local interactions select for lower pathogen infectivity. Science 315, 1284–1286 (2007). (PMID: 1733241510.1126/science.1137126)
Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013). (PMID: 2334700910.1111/ele.12076)
Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog. 10, e1004387 (2014). (PMID: 25340792420781810.1371/journal.ppat.1004387)
Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does multiple infection select for raised virulence? Trends Microbiol. 10, 401–405 (2002). (PMID: 1221750410.1016/S0966-842X(02)02413-7)
Peacor, S. D. & Werner, E. E. The contribution of trait-mediated indirect effects to the net effects of a predator. Proc. Natl Acad. Sci. USA 98, 3904–3908 (2001). (PMID: 112596743115110.1073/pnas.071061998)
Seppälä, O., Karvonen, A. & Valtonen, E. T. Shoaling behaviour of fish under parasitism and predation risk. Anim. Behav. 75, 145–150 (2008). (PMID: 10.1016/j.anbehav.2007.04.022)
Lopez, L. K. & Duffy, M. A. Mechanisms by which predators mediate host–parasite interactions in aquatic systems. Trends Parasitol. 37, 890–906 (2021). (PMID: 3428179810.1016/j.pt.2021.06.006)
Rigby, M. C. & Jokela, J. Predator avoidance and immune defence: costs and trade-offs in snails. Proc. R. Soc. B 267, 171–176 (2000). (PMID: 10687823169051510.1098/rspb.2000.0983)
Krause, J., Ruxton, G. D., Ruxton, G. & Ruxton, I. G. Living in Groups (Oxford Univ. Press, 2002).
Godin, J.-G. J. Antipredator function of shoaling in teleost fishes: a selective review. Nat. Can. 113, 241–250 (1986).
Gandon, S., van Baalen, M. & Jansen, V. A. The evolution of parasite virulence, superinfection, and host resistance. Am. Nat. 159, 658–669 (2002). (PMID: 1870738810.1086/339993)
Magurran, A. E. Evolutionary Ecology: The Trinidadian Guppy (Oxford Univ. Press, 2005).
Magurran, A. E. & Seghers, B. H. Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour 118, 214–234 (1991). (PMID: 10.1163/156853991X00292)
Seghers, B. H. & Magurran, A. E. Predator inspection behaviour covaries with schooling tendency amongst wild guppy, Poecilia reticulata, populations in Trinidad. Behaviour 128, 121–134 (1994). (PMID: 10.1163/156853994X00073)
Huizinga, M., Ghalambor, C. & Reznick, D. The genetic and environmental basis of adaptive differences in shoaling behaviour among populations of Trinidadian guppies, Poecilia reticulata. J. Evolut. Biol. 22, 1860–1866 (2009). (PMID: 10.1111/j.1420-9101.2009.01799.x)
Stephenson, J. F., Van Oosterhout, C., Mohammed, R. S. & Cable, J. Parasites of Trinidadian guppies: evidence for sex‐ and age‐specific trait‐mediated indirect effects of predators. Ecology 96, 489–498 (2015). (PMID: 2624087010.1890/14-0495.1)
Richards, E. L., Van Oosterhout, C. & Cable, J. Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS ONE 5, e13285 (2010). (PMID: 20949014295260110.1371/journal.pone.0013285)
Johnson, M. B., Lafferty, K. D., Van Oosterhout, C. & Cable, J. Parasite transmission in social interacting hosts: monogenean epidemics in guppies. PLoS ONE https://doi.org/10.1371/journal.pone.0022634 (2011).
Gotanda, K. M. et al. Adding parasites to the guppy-predation story: insights from field surveys. Oecologia 172, 155–166 (2013). (PMID: 2305324010.1007/s00442-012-2485-7)
Fraser, B. A., Ramnarine, I. W. & Neff, B. D. Temporal variation at the MHC class IIB in wild populations of the guppy (Poecilia reticulata). Evolution 64, 2086–2096 (2010). (PMID: 20148955)
Stephenson, J. F. et al. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos. Trans. R. Soc. B 372, 20160093 (2017). (PMID: 10.1098/rstb.2016.0093)
Cable, J. & Van Oosterhout, C. The impact of parasites on the life history evolution of guppies (Poecilia reticulata): the effects of host size on parasite virulence. Int. J. Parasitol. 37, 1449–1458 (2007). (PMID: 1756102310.1016/j.ijpara.2007.04.013)
Reznick, D. N., Butler, M. J. IV, Rodd, F. H. & Ross, P. Life‐history evolution in guppies (Poecilia reticulata) 6. Differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996). (PMID: 28565709)
Bonds, M. H., Keenan, D. C., Leidner, A. J. & Rohani, P. Higher disease prevalence can induce greater sociality: a game theoretic coevolutionary model. Evolution 59, 1859–1866 (2005). (PMID: 1626172410.1111/j.0014-3820.2005.tb01056.x)
Kerr, B., Neuhauser, C., Bohannan, B. J. & Dean, A. M. Local migration promotes competitive restraint in a host–pathogen ‘tragedy of the commons’. Nature 442, 75–78 (2006). (PMID: 1682345210.1038/nature04864)
Boots, M. & Sasaki, A. ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. B 266, 1933–1938 (1999). (PMID: 10584335169030610.1098/rspb.1999.0869)
Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459, 983–986 (2009). (PMID: 1947479110.1038/nature08071)
Dargent, F., Rolshausen, G., Hendry, A., Scott, M. & Fussmann, G. Parting ways: parasite release in nature leads to sex‐specific evolution of defence. J. Evolut. Biol. 29, 23–34 (2016). (PMID: 10.1111/jeb.12758)
Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990). (PMID: 10.1038/346357a0)
Stephenson, J. F., van Oosterhout, C. & Cable, J. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance. Biol. Lett. 11, 20150806 (2015). (PMID: 26538541468554810.1098/rsbl.2015.0806)
Stephenson, J. F., Stevens, M., Troscianko, J. & Jokela, J. The size, symmetry, and color saturation of a male guppy’s ornaments forecast his resistance to parasites. Am. Naturalist 196, 597–608 (2020). (PMID: 10.1086/711033)
Godin, J.-G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003). (PMID: 10.1093/beheco/14.2.194)
Van Oosterhout, C., Harris, P. & Cable, J. Marked variation in parasite resistance between two wild populations of the Trinidadian guppy, Poecilia reticulata (Pisces: Poeciliidae). Biol. J. Linn. Soc. 79, 645–651 (2003). (PMID: 10.1046/j.1095-8312.2003.00203.x)
Hawley, D. M., Gibson, A. K., Townsend, A. K., Craft, M. E. & Stephenson, J. F. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 148, 274–288 (2020). (PMID: 3309268010.1017/S0031182020002048)
Janecka, M. J., Rovenolt, F. & Stephenson, J. F. How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale? Behav. Ecol. Sociobiol. 75, 1–20 (2021). (PMID: 10.1007/s00265-021-03089-y)
Tao, H., Li, L., White, M. C., Steel, J. & Lowen, A. C. Influenza A virus coinfection through transmission can support high levels of reassortment. J. Virol. 89, 8453–8461 (2015). (PMID: 26041285452422110.1128/JVI.01162-15)
Eshel, I. Evolutionary and continuous stability. J. Theor. Biol. 103, 99–111 (1983). (PMID: 10.1016/0022-5193(83)90201-1)
Hurford, A., Cownden, D. & Day, T. Next-generation tools for evolutionary invasion analyses. J. R. Soc. Interface 7, 561–571 (2009). (PMID: 19955121284278710.1098/rsif.2009.0448)
Leimar, O. Multidimensional convergence stability. Evolut. Ecol. Res. 11, 191–208 (2009).
Reznick, D., Bryant, M. & Holmes, D. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biol. 4, e7 (2005). (PMID: 131847310.1371/journal.pbio.0040007)
Stephenson, J. F. Parasite-induced plasticity in host social behaviour depends on sex and susceptibility. Biol. Lett. https://doi.org/10.1098/rsbl.2019.0557 (2019).
Lopez, S. Acquired resistance affects male sexual display and female choice in guppies. Proc. R. Soc. B 265, 717–723 (1998). (PMID: 10.1098/rspb.1998.0352)
van Oosterhout, C. et al. Selection by parasites in spate conditions in wild Trinidadian guppies (Poecilia reticulata). Int. J. Parasitol. 37, 805–812 (2007). (PMID: 1730718510.1016/j.ijpara.2006.12.016)
Pérez-Jvostov, F., Hendry, A. P., Fussmann, G. F. & Scott, M. E. Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia 170, 77–88 (2012). (PMID: 2240262210.1007/s00442-012-2289-9)
Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer, 2003).
Carnell, R. lhs: Latin hypercube samples v.1.1.1 (R-Project, 2020).
Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. Sensitivity: Global sensitivity analysis of model outputs v.1.25.0 (R-Project, 2021).
Wright, D. & Krause, J. Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishes. Nat. Protoc. 1, 1828–1831 (2006). (PMID: 1748716510.1038/nprot.2006.287)
Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016). (PMID: 10.1111/2041-210X.12584)
Griffiths, S. W. & Magurran, A. E. Sex and schooling behaviour in the Trinidadian guppy. Anim. Behav. 56, 689–693 (1998). (PMID: 978421810.1006/anbe.1998.0767)
Magurran, A., Seghers, B., Carvalho, G. & Shaw, P. Behavioural consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of anti-predator behaviour in the wild. Proc. R. Soc. B 248, 117–122 (1992). (PMID: 10.1098/rspb.1992.0050)
Sievers, C. et al. Reasons for the invasive success of a guppy (Poecilia reticulata) population in Trinidad. PLoS ONE 7, e38404 (2012). (PMID: 22693621336501510.1371/journal.pone.0038404)
Mohammed, R. S. et al. Parasite diversity and ecology in a model species, the guppy (Poecilia reticulata) in Trinidad. R. Soc. Open Sci. 7, 191112 (2020). (PMID: 32218941702990210.1098/rsos.191112)
Lyles, A. M. Genetic Variation and Susceptibility to Parasites: Poeclia reticulata Infected with Gyrodactylus turnbulli. PhD dissertation, Princeton Univ. (1990).
Fraser, B. A. & Neff, B. D. Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273 (2010). (PMID: 1972811310.1007/s10709-009-9402-y)
Reznick, D. & Endler, J. A. The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36, 160–177 (1982). (PMID: 28581096)
El‐Sabaawi, R. W. et al. Assessing the effects of guppy life history evolution on nutrient recycling: from experiments to the field. Freshw. Biol. 60, 590–601 (2015). (PMID: 10.1111/fwb.12507)
Liley, N. & Luyten, P. Geographic variation in the sexual behaviour of the guppy, Poecilia reticulata (Peters). Behaviour 95, 164–179 (1985). (PMID: 10.1163/156853985X00109)
Reznick, D. N. et al. Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. Am. Nat. 194, 671–692 (2019). (PMID: 3161366410.1086/705380)
سلسلة جزيئية: Dryad 10.5061/dryad.k3j9kd59h
تواريخ الأحداث: Date Created: 20220526 Date Completed: 20220711 Latest Revision: 20221025
رمز التحديث: 20221213
DOI: 10.1038/s41559-022-01772-5
PMID: 35618818
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-334X
DOI:10.1038/s41559-022-01772-5