دورية أكاديمية

Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ.

التفاصيل البيبلوغرافية
العنوان: Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ.
المؤلفون: Pham B; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States., Cheng Z; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States., Lopez D; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States., Lindsay RJ; UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States., Foutch D; UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States., Majors RT; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States., Shen T; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States.
المصدر: Frontiers in molecular biosciences [Front Mol Biosci] 2022 Jun 15; Vol. 9, pp. 904445. Date of Electronic Publication: 2022 Jun 15 (Print Publication: 2022).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Media S.A Country of Publication: Switzerland NLM ID: 101653173 Publication Model: eCollection Cited Medium: Print ISSN: 2296-889X (Print) Linking ISSN: 2296889X NLM ISO Abbreviation: Front Mol Biosci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Media S.A., [2014]-
مستخلص: The receptor RORγ belongs to the nuclear receptor superfamily that senses small signaling molecules and regulates at the gene transcription level. Since RORγ has a high basal activity and plays an important role in immune responses, inhibitors targeting this receptor have been a focus for many studies. The receptor-ligand interaction is complex, and often subtle differences in ligand structure can determine its role as an inverse agonist or an agonist. We examined more than 130 existing RORγ crystal structures that have the same receptor complexed with different ligands. We reported the features of receptor-ligand interaction patterns and the differences between agonist and inverse agonist binding. Specific changes in the contact interaction map are identified to distinguish active and inactive conformations. Further statistical analysis of the contact interaction patterns using principal component analysis reveals a dominant mode which separates allosteric binding vs. canonical binding and a second mode which may indicate active vs. inactive structures. We also studied the nature of constitutive activity by performing a 100-ns computer simulation of apo RORγ. Using constitutively active nuclear receptor CAR as a comparison, we identified a group of conserved contacts that have similar contact strength between the two receptors. These conserved contact interactions, especially a couple key contacts in H11-H12 interaction, can be considered essential to the constitutive activity of RORγ. These protein-ligand and internal protein contact interactions can be useful in the development of new drugs that direct receptor activity.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2022 Pham, Cheng, Lopez, Lindsay, Foutch, Majors and Shen.)
References: Phys Rev E. 2020 Jan;101(1-1):012419. (PMID: 32069653)
ACS Med Chem Lett. 2020 Nov 06;11(12):2510-2518. (PMID: 33335675)
Bioorg Med Chem Lett. 2018 Dec 1;28(22):3549-3553. (PMID: 30301676)
Bioorg Med Chem. 2018 Feb 1;26(3):721-736. (PMID: 29342416)
Nucleic Acids Res. 2018 Sep 19;46(16):8143-8152. (PMID: 29992238)
Bioorg Med Chem Lett. 2020 Jun 15;30(12):127204. (PMID: 32334911)
Sci Rep. 2018 Nov 26;8(1):17374. (PMID: 30478402)
Expert Opin Drug Metab Toxicol. 2012 Jul;8(7):803-17. (PMID: 22554043)
ACS Med Chem Lett. 2015 Nov 04;7(1):23-7. (PMID: 26819660)
BMC Struct Biol. 2016 Jun 01;16(1):7. (PMID: 27246200)
ChemMedChem. 2016 Sep 6;11(17):1881-5. (PMID: 27432277)
ACS Med Chem Lett. 2020 Mar 31;11(6):1221-1227. (PMID: 32551004)
ChemMedChem. 2020 Apr 3;15(7):561-565. (PMID: 32053744)
Elife. 2019 Jun 07;8:. (PMID: 31172947)
Bioorg Med Chem Lett. 2020 Jun 15;30(12):127205. (PMID: 32336498)
J Med Chem. 2018 Apr 12;61(7):2973-2988. (PMID: 29510038)
Biochemistry. 2019 Feb 12;58(6):697-705. (PMID: 30571104)
Biochim Biophys Acta. 2015 Sep;1852(9):1912-27. (PMID: 26115970)
Bioorg Med Chem Lett. 2015 May 1;25(9):1892-5. (PMID: 25840886)
Bioorg Med Chem Lett. 2020 Dec 1;30(23):127521. (PMID: 32882417)
J Med Chem. 2019 Mar 14;62(5):2837-2842. (PMID: 30776227)
Bioorg Med Chem Lett. 2014 Aug 15;24(16):3891-7. (PMID: 25017032)
Mol Endocrinol. 2010 Jul;24(7):1322-37. (PMID: 20203099)
Cell Metab. 2015 Feb 03;21(2):286-298. (PMID: 25651181)
Biochem Biophys Res Commun. 2004 Mar 19;315(4):919-27. (PMID: 14985100)
Biochemistry. 2015 Feb 24;54(7):1534-41. (PMID: 25658131)
ACS Med Chem Lett. 2014 Dec 04;6(3):276-81. (PMID: 25815138)
J Med Chem. 2021 Mar 11;64(5):2714-2724. (PMID: 33591748)
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6):. (PMID: 33536342)
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4150-5. (PMID: 12644700)
ChemMedChem. 2016 Jan 19;11(2):207-16. (PMID: 26553345)
ACS Med Chem Lett. 2019 May 29;10(6):972-977. (PMID: 31223457)
ACS Med Chem Lett. 2013 Nov 22;5(1):65-8. (PMID: 24900774)
Mol Endocrinol. 2010 May;24(5):923-9. (PMID: 20203100)
Bioorg Med Chem Lett. 2020 Oct 1;30(19):127441. (PMID: 32736080)
J Comput Chem. 2010 Jan 30;31(2):455-61. (PMID: 19499576)
Trends Endocrinol Metab. 2012 Dec;23(12):619-27. (PMID: 22789990)
Bioorg Med Chem Lett. 2019 Jul 15;29(14):1799-1806. (PMID: 31101472)
Acta Pharmacol Sin. 2015 Jan;36(1):71-87. (PMID: 25500868)
J Phys Chem B. 2016 Aug 25;120(33):8338-45. (PMID: 27110634)
J Med Chem. 2019 Feb 14;62(3):1167-1179. (PMID: 30652849)
Bioorg Med Chem Lett. 2021 Mar 1;35:127778. (PMID: 33422603)
Nat Commun. 2015 Dec 07;6:8833. (PMID: 26640126)
Bioorg Med Chem. 2018 Jan 15;26(2):483-500. (PMID: 29262987)
Bioorg Med Chem Lett. 2020 Sep 1;30(17):127392. (PMID: 32738966)
Biophys Chem. 2021 Apr;271:106552. (PMID: 33581430)
Bioorg Med Chem Lett. 2019 Jun 15;29(12):1463-1470. (PMID: 31010722)
J Med Chem. 2019 Dec 12;62(23):10816-10832. (PMID: 31729873)
Protein Sci. 2018 Nov;27(11):1876-1892. (PMID: 30109749)
Nucl Receptor Res. 2015;2:. (PMID: 26878025)
J Biol Chem. 2017 Jul 14;292(28):11618-11630. (PMID: 28546429)
ACS Med Chem Lett. 2020 Jan 09;11(2):114-119. (PMID: 32071676)
J Med Chem. 2021 Jul 8;64(13):9238-9258. (PMID: 34008974)
Bioorg Med Chem Lett. 2015 Aug 1;25(15):2985-90. (PMID: 26048789)
Mol Endocrinol. 2003 Jan;17(1):1-10. (PMID: 12511601)
Bioorg Med Chem. 2015 Sep 1;23(17):5293-302. (PMID: 26277758)
J Med Chem. 2018 Dec 13;61(23):10415-10439. (PMID: 30130103)
Bioorg Med Chem Lett. 2018 May 15;28(9):1446-1455. (PMID: 29631962)
Cell Chem Biol. 2019 May 16;26(5):662-673.e7. (PMID: 30827936)
Mol Endocrinol. 2014 Feb;28(2):173-82. (PMID: 24284822)
Bioorg Med Chem Lett. 2013 Dec 15;23(24):6604-9. (PMID: 24239186)
Nucleic Acids Res. 2012 Sep 1;40(17):8519-35. (PMID: 22753030)
J Med Chem. 2019 May 9;62(9):4716-4730. (PMID: 30964293)
Bioorg Med Chem Lett. 2018 Jan 15;28(2):85-93. (PMID: 29233651)
ChemMedChem. 2019 Nov 20;14(22):1917-1932. (PMID: 31659845)
J Med Chem. 2019 Nov 14;62(21):9931-9946. (PMID: 31638797)
Mol Cell. 2004 Dec 22;16(6):919-28. (PMID: 15610735)
ACS Med Chem Lett. 2015 May 26;6(7):787-92. (PMID: 26191367)
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W537-41. (PMID: 22570416)
J Med Chem. 2018 Aug 9;61(15):6724-6735. (PMID: 29990434)
J Chem Inf Model. 2019 Dec 23;59(12):5174-5182. (PMID: 31714771)
ChemMedChem. 2017 Jul 6;12(13):1014-1021. (PMID: 28590087)
J Med Chem. 2018 Sep 13;61(17):7796-7813. (PMID: 30095900)
ACS Med Chem Lett. 2020 Feb 27;11(4):528-534. (PMID: 32292560)
Genes Cells. 2017 Jun;22(6):535-551. (PMID: 28493531)
Bioorg Med Chem Lett. 2017 May 1;27(9):2047-2057. (PMID: 28318945)
ACS Med Chem Lett. 2019 Feb 26;10(3):367-373. (PMID: 30891142)
ACS Med Chem Lett. 2018 Jan 22;9(2):120-124. (PMID: 29456799)
Bioorg Med Chem Lett. 2016 May 15;26(10):2459-2463. (PMID: 27080181)
Bioorg Med Chem Lett. 2014 Dec 15;24(24):5769-5776. (PMID: 25453817)
Mol Cell Biol. 2002 Aug;22(15):5270-80. (PMID: 12101224)
J Biol Chem. 2011 Sep 9;286(36):31409-17. (PMID: 21733845)
Bioorg Med Chem Lett. 2015 Aug 1;25(15):2991-7. (PMID: 26048806)
Bioorg Med Chem Lett. 2021 Mar 15;36:127786. (PMID: 33493627)
Bioorg Med Chem Lett. 2016 Dec 1;26(23):5802-5808. (PMID: 27815118)
J Med Chem. 2020 Jan 9;63(1):241-259. (PMID: 31821760)
Mol Cell Endocrinol. 2012 Jan 30;348(2):411-7. (PMID: 21801809)
J Comput Chem. 2018 Jul 30;39(20):1568-1578. (PMID: 29464733)
J Med Chem. 2021 May 13;64(9):5470-5484. (PMID: 33852312)
ChemMedChem. 2016 Dec 16;11(24):2640-2648. (PMID: 27902884)
Bioorg Med Chem Lett. 2019 Aug 15;29(16):2265-2269. (PMID: 31257087)
Eur J Med Chem. 2021 Oct 15;222:113585. (PMID: 34118722)
فهرسة مساهمة: Keywords: constitutive activity; inverse agonist; nuclear receptor; protein-ligand interaction; statistical analysis
تواريخ الأحداث: Date Created: 20220705 Latest Revision: 20220716
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC9240913
DOI: 10.3389/fmolb.2022.904445
PMID: 35782874
قاعدة البيانات: MEDLINE
الوصف
تدمد:2296-889X
DOI:10.3389/fmolb.2022.904445