دورية أكاديمية

Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex.

التفاصيل البيبلوغرافية
العنوان: Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex.
المؤلفون: Kwon JJ; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Harvard Medical School, Boston, Massachusetts, USA., Hajian B; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Bian Y; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Young LC; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA., Amor AJ; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Fuller JR; Helix Biostructures, Indianapolis, IN, USA., Fraley CV; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Sykes AM; Harvard Medical School, Boston, Massachusetts, USA.; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., So J; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Harvard Medical School, Boston, Massachusetts, USA., Pan J; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Harvard Medical School, Boston, Massachusetts, USA., Baker L; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Lee SJ; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Harvard Medical School, Boston, Massachusetts, USA., Wheeler DB; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA., Mayhew DL; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.; Harvard Medical School, Boston, Massachusetts, USA., Persky NS; Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Yang X; Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Root DE; Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Barsotti AM; Deerfield Discovery and Development, Deerfield Management, New York, NY, USA., Stamford AW; Deerfield Discovery and Development, Deerfield Management, New York, NY, USA., Perry CK; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Burgin A; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA., McCormick F; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.; NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA., Lemke CT; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. clemke@broadinstitute.org., Hahn WC; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. william_hahn@dfci.harvard.edu.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. william_hahn@dfci.harvard.edu.; Harvard Medical School, Boston, Massachusetts, USA. william_hahn@dfci.harvard.edu.; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. william_hahn@dfci.harvard.edu., Aguirre AJ; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. andrew_aguirre@dfci.harvard.edu.; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. andrew_aguirre@dfci.harvard.edu.; Harvard Medical School, Boston, Massachusetts, USA. andrew_aguirre@dfci.harvard.edu.; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. andrew_aguirre@dfci.harvard.edu.
المصدر: Nature [Nature] 2022 Sep; Vol. 609 (7926), pp. 408-415. Date of Electronic Publication: 2022 Jul 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Cryoelectron Microscopy* , Intracellular Signaling Peptides and Proteins*/chemistry , Intracellular Signaling Peptides and Proteins*/genetics , Intracellular Signaling Peptides and Proteins*/metabolism , Multiprotein Complexes*/chemistry , Multiprotein Complexes*/metabolism , Multiprotein Complexes*/ultrastructure , Protein Phosphatase 1*/chemistry , Protein Phosphatase 1*/metabolism , Protein Phosphatase 1*/ultrastructure , ras Proteins*/chemistry , ras Proteins*/metabolism , ras Proteins*/ultrastructure, Amino Acid Motifs ; Binding Sites ; Guanosine Triphosphate/metabolism ; Humans ; MAP Kinase Signaling System ; Mutation, Missense ; Phosphorylation ; Protein Binding ; Protein Stability ; raf Kinases
مستخلص: Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling 1 . SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes 2-5 . However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nature. 2022 Sep;609(7926):248-249. (PMID: 35970881)
References: Rodriguez-Viciana, P., Oses-Prieto, J., Burlingame, A., Fried, M. & McCormick, F. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol. Cell 22, 217–230 (2006). (PMID: 10.1016/j.molcel.2006.03.02716630891)
Cordeddu, V. et al. Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nat. Genet. 41, 1022–1026 (2009). (PMID: 10.1038/ng.425196846052765465)
Higgins, E. M. et al. Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight 2, e91225 (2017). (PMID: 10.1172/jci.insight.91225282897185333962)
Gripp, K. W. et al. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair. Am. J. Med. Genet. A 170, 2237–2247 (2016). (PMID: 10.1002/ajmg.a.37781272646735134331)
Ma, L. et al. De novo missense variants in PPP1CB are associated with intellectual disability and congenital heart disease. Hum. Genet. 135, 1399–1409 (2016). (PMID: 10.1007/s00439-016-1731-1276813855663278)
Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017). (PMID: 10.1016/j.cell.2017.06.009286661185555610)
Gripp, K. W. & Lin, A. E. Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations. Genet. Med. 14, 285–292 (2012). (PMID: 10.1038/gim.0b013e31822dd91f22261753)
Young, L. C. et al. SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Proc. Natl Acad. Sci. USA 115, E10576–E10585 (2018). (PMID: 10.1073/pnas.1720352115303487836233131)
Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903 (2017). (PMID: 10.1016/j.cell.2017.01.013281627705445660)
Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019). (PMID: 10.1038/s41586-019-1103-930971826)
Sulahian, R. et al. Synthetic lethal Interaction of SHOC2 depletion with MEK inhibition in RAS-driven cancers. Cell Rep. 29, 118–134 (2019). (PMID: 10.1016/j.celrep.2019.08.090315779426918830)
Boned Del Río, I. et al. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proc. Natl Acad. Sci. USA 116, 13330–13339 (2019). (PMID: 10.1073/pnas.1902658116312135326613145)
Klein, S. A., Majumdar, A. & Barrick, D. A second backbone: the contribution of a buried asparagine ladder to the global and local stability of a leucine-rich repeat protein. Biochemistry 58, 3480–3493 (2019). (PMID: 10.1021/acs.biochem.9b0035531347358)
Motta, M. et al. SHOC2 subcellular shuttling requires the KEKE motif-rich region and N-terminal leucine-rich repeat domain and impacts on ERK signalling. Hum. Mol. Genet. 25, 3824–3835 (2016). (PMID: 10.1093/hmg/ddw22927466182)
Kwon, J. J. & Hahn, W. C. A leucine-rich repeat protein provides a SHOC2 the RAS circuit: a structure-function perspective. Mol. Cell. Biol. 41, e00627-20 (2021).
Terrak, M., Kerff, F., Langsetmo, K., Tao, T. & Dominguez, R. Structural basis of protein phosphatase 1 regulation. Nature 429, 780–784 (2004). (PMID: 10.1038/nature0258215164081)
Choy, M. S. et al. SDS22 selectively recognizes and traps metal-deficient inactive PP1. Proc. Natl Acad. Sci. USA 116, 20472–20481 (2019). (PMID: 10.1073/pnas.1908718116315484296789808)
Young, L. C. et al. An MRAS, SHOC2, and SCRIB complex coordinates ERK pathway activation with polarity and tumorigenic growth. Mol. Cell 52, 679–692 (2013). (PMID: 10.1016/j.molcel.2013.10.00424211266)
Egloff, M. P. et al. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16, 1876–1887 (1997). (PMID: 10.1093/emboj/16.8.187691550141169791)
Zhao, S. & Lee, E. Y. A protein phosphatase-1-binding motif identified by the panning of a random peptide display library. J. Biol. Chem. 272, 28368–28372 (1997). (PMID: 10.1074/jbc.272.45.283689353294)
Hannig, V., Jeoung, M., Jang, E. R., Phillips, J. A. 3rd & Galperin, E. A novel SHOC2 variant in Rasopathy. Hum. Mutat. 35, 1290–1294 (2014). (PMID: 251375484213265)
Mysore, V. P. et al. A structural model of a Ras–Raf signalosome. Nat. Struct. Mol. Biol. 28, 847–857 (2021). (PMID: 10.1038/s41594-021-00667-6346257478643099)
Sieburth, D. S., Sun, Q. & Han, M. SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94, 119–130 (1998). (PMID: 10.1016/S0092-8674(00)81227-19674433)
Matsunaga-Udagawa, R. et al. The scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and Raf. J. Biol. Chem. 285, 7818–7826 (2010). (PMID: 10.1074/jbc.M109.053975200515202844225)
Li, W., Han, M. & Guan, K. L. The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev. 14, 895–900 (2000). (PMID: 10.1101/gad.14.8.89510783161316541)
Wakula, P., Beullens, M., Ceulemans, H., Stalmans, W. & Bollen, M. Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J. Biol. Chem. 278, 18817–18823 (2003). (PMID: 10.1074/jbc.M30017520012657641)
Krzyzosiak, A. et al. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 174, 1216–1228.e19 (2018). (PMID: 10.1016/j.cell.2018.06.030300571116108835)
Parton, R. G. & Hancock, J. F. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol. 14, 141–147 (2004). (PMID: 10.1016/j.tcb.2004.02.00115003623)
Park, E. et al. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature 575, 545–550 (2019). (PMID: 10.1038/s41586-019-1660-y315811747014971)
Freed, E., Symons, M., Macdonald, S. G., McCormick, F. & Ruggieri, R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265, 1713–1716 (1994). (PMID: 10.1126/science.80851588085158)
Tran, T. H. et al. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Nat. Commun. 12, 1176 (2021). (PMID: 10.1038/s41467-021-21422-x336085347895934)
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011). (PMID: 10.1107/S0907444910048675214604453069742)
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). (PMID: 10.1107/S0021889807021206194618402483472)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). (PMID: 10.1107/S0907444910007493203830022852313)
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018). (PMID: 10.1107/S2059798318006551)
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).
Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). (PMID: 10.1016/j.jsb.2015.08.008262789806760662)
Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife7, e35383 (2018).
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019). (PMID: 10.1038/s41592-019-0575-8315915786858545)
Kelker, M. S., Page, R. & Peti, W. Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J. Mol. Biol. 385, 11–21 (2009). (PMID: 10.1016/j.jmb.2008.10.05318992256)
Shima, F. et al. Structural basis for conformational dynamics of GTP-bound Ras protein. J. Biol. Chem. 285, 22696–22705 (2010). (PMID: 10.1074/jbc.M110.125161204790062903345)
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 10.1002/jcc.2008415264254)
Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015). (PMID: 10.1038/nmeth.3541262803284589481)
Zhu, K. et al. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins 82, 1646–1655 (2014). (PMID: 10.1002/prot.24551246198745282925)
Salam, N. K., Adzhigirey, M., Sherman, W. & Pearlman, D. A. Structure-based approach to the prediction of disulfide bonds in proteins. Protein Eng. Des. Sel. 27, 365–374 (2014). (PMID: 10.1093/protein/gzu01724817698)
Beard, H., Cholleti, A., Pearlman, D., Sherman, W. & Loving, K. A. Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein–protein complexes. PLoS One 8, e82849 (2013). (PMID: 10.1371/journal.pone.0082849243400623858304)
Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC ’06: Proc. 2006 ACM/IEEE Conference on Supercomputing 43 (IEEE, 2006).
Lu, C. et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 17, 4291–4300 (2021). (PMID: 10.1021/acs.jctc.1c0030234096718)
Yang, X. et al. Define protein variant functions with high-complexity mutagenesis libraries and enhanced mutation detection software. Preprint at bioRxiv https://doi.org/10.1101/2021.06.16.448102 (2021).
Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005). (PMID: 10.1093/nar/gki387159804941160148)
Tiberti, M. et al. MutateX: an automated pipeline for in-silico saturation mutagenesis of protein structures and structural ensembles. Brief. Bioinform.23, bbac074 (2022).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
معلومات مُعتمدة: R35 CA197709 United States CA NCI NIH HHS; K08 CA218420 United States CA NCI NIH HHS; U01 CA176058 United States CA NCI NIH HHS; F32 CA243290 United States CA NCI NIH HHS; U01 CA250549 United States CA NCI NIH HHS; P50 CA127003 United States CA NCI NIH HHS; P01 CA203655 United States CA NCI NIH HHS; U01 CA224146 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Intracellular Signaling Peptides and Proteins)
0 (MRAS protein, human)
0 (Multiprotein Complexes)
0 (SHOC2 protein, human)
86-01-1 (Guanosine Triphosphate)
EC 2.7.11.1 (raf Kinases)
EC 3.1.3.16 (Protein Phosphatase 1)
EC 3.6.5.2 (ras Proteins)
تواريخ الأحداث: Date Created: 20220713 Date Completed: 20220909 Latest Revision: 20231230
رمز التحديث: 20231231
مُعرف محوري في PubMed: PMC9694338
DOI: 10.1038/s41586-022-04928-2
PMID: 35831509
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-022-04928-2