دورية أكاديمية

Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study.

التفاصيل البيبلوغرافية
العنوان: Population replacement gene drive characteristics for malaria elimination in a range of seasonal transmission settings: a modelling study.
المؤلفون: Leung S; Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA., Windbichler N; Department of Life Sciences, Imperial College London, South Kensington, London, UK., Wenger EA; Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA., Bever CA; Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA., Selvaraj P; Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA. prashanth.selvaraj@gatesfoundation.org.
المصدر: Malaria journal [Malar J] 2022 Jul 26; Vol. 21 (1), pp. 226. Date of Electronic Publication: 2022 Jul 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101139802 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2875 (Electronic) Linking ISSN: 14752875 NLM ISO Abbreviation: Malar J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2002-
مواضيع طبية MeSH: Culicidae* , Gene Drive Technology* , Insecticides* , Malaria*/prevention & control, Animals ; Humans ; Mosquito Control/methods ; Mosquito Vectors/genetics ; Population Dynamics ; Seasons
مستخلص: Background: Gene drives are a genetic engineering method where a suite of genes is inherited at higher than Mendelian rates and has been proposed as a promising new vector control strategy to reinvigorate the fight against malaria in sub-Saharan Africa.
Methods: Using an agent-based model of malaria transmission with vector genetics, the impacts of releasing population-replacement gene drive mosquitoes on malaria transmission are examined and the population replacement gene drive system parameters required to achieve local elimination within a spatially-resolved, seasonal Sahelian setting are quantified. The performance of two different gene drive systems-"classic" and "integral"-are evaluated. Various transmission regimes (low, moderate, and high-corresponding to annual entomological inoculation rates of 10, 30, and 80 infectious bites per person) and other simultaneous interventions, including deployment of insecticide-treated nets (ITNs) and passive healthcare-seeking, are also simulated.
Results: Local elimination probabilities decreased with pre-existing population target site resistance frequency, increased with transmission-blocking effectiveness of the introduced antiparasitic gene and drive efficiency, and were context dependent with respect to fitness costs associated with the introduced gene. Of the four parameters, transmission-blocking effectiveness may be the most important to focus on for improvements to future gene drive strains because a single release of classic gene drive mosquitoes is likely to locally eliminate malaria in low to moderate transmission settings only when transmission-blocking effectiveness is very high (above ~ 80-90%). However, simultaneously deploying ITNs and releasing integral rather than classic gene drive mosquitoes significantly boosts elimination probabilities, such that elimination remains highly likely in low to moderate transmission regimes down to transmission-blocking effectiveness values as low as ~ 50% and in high transmission regimes with transmission-blocking effectiveness values above ~ 80-90%.
Conclusion: A single release of currently achievable population replacement gene drive mosquitoes, in combination with traditional forms of vector control, can likely locally eliminate malaria in low to moderate transmission regimes within the Sahel. In a high transmission regime, higher levels of transmission-blocking effectiveness than are currently available may be required.
(© 2022. The Author(s).)
References: Malar J. 2021 Mar 29;20(1):170. (PMID: 33781254)
PLoS Genet. 2017 Jul 20;13(7):e1006796. (PMID: 28727785)
Lancet. 2016 Apr 23;387(10029):1785-8. (PMID: 26880124)
Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):E6736-43. (PMID: 26598698)
Nat Biotechnol. 2016 Jan;34(1):78-83. (PMID: 26641531)
Malar J. 2019 Sep 5;18(1):307. (PMID: 31488139)
Sci Rep. 2017 Jun 19;7(1):3776. (PMID: 28630470)
Nature. 2019 Oct;574(7778):404-408. (PMID: 31578527)
PLoS Pathog. 2020 Apr 24;16(4):e1008453. (PMID: 32330198)
Evol Appl. 2022 Jan 07;15(1):132-148. (PMID: 35126652)
Parassitologia. 1999 Sep;41(1-3):461-71. (PMID: 10697903)
BMC Infect Dis. 2018 Aug 22;18(1):413. (PMID: 30134861)
PLoS Pathog. 2011 Apr;7(4):e1002017. (PMID: 21533066)
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22805-22814. (PMID: 32839345)
BMJ Open. 2019 Sep 13;9(9):e030598. (PMID: 31519680)
PLoS Genet. 2019 Dec 19;15(12):e1008440. (PMID: 31856182)
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):E255-E264. (PMID: 28028208)
Nat Biotechnol. 2012 Sep;30(9):828-30. (PMID: 22965050)
Biol Open. 2019 Jan 3;8(1):. (PMID: 30498016)
BMC Biol. 2020 Aug 11;18(1):98. (PMID: 32782000)
Lancet. 2019 Sep 21;394(10203):1056-1112. (PMID: 31511196)
J Infect Dis. 2016 Dec 15;214(12):1831-1839. (PMID: 27923947)
Insects. 2021 Jan 23;12(2):. (PMID: 33498790)
PLoS Pathog. 2010 Jul 15;6(7):e1001003. (PMID: 20664791)
PLoS Pathog. 2011 Dec;7(12):e1002458. (PMID: 22216006)
PLoS One. 2012;7(8):e42771. (PMID: 22970102)
Nat Commun. 2020 Nov 3;11(1):5553. (PMID: 33144570)
J Appl Ecol. 2013 Oct;50(5):1216-1225. (PMID: 25558082)
Trends Biotechnol. 2013 Mar;31(3):185-93. (PMID: 23395485)
Vector Borne Zoonotic Dis. 2020 Apr;20(4):237-251. (PMID: 32155390)
PLoS Biol. 2020 Jun 25;18(6):e3000633. (PMID: 32584814)
J Med Entomol. 2021 Sep 7;58(5):1997-2005. (PMID: 34018548)
Proc Biol Sci. 2003 May 7;270(1518):921-8. (PMID: 12803906)
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5522-5527. (PMID: 29735716)
PLoS Negl Trop Dis. 2015 Jul 02;9(7):e0003864. (PMID: 26135160)
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7692-7697. (PMID: 30642954)
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1922-30. (PMID: 22689959)
PLoS One. 2014 Feb 06;9(2):e88625. (PMID: 24516671)
Nat Rev Genet. 2016 Mar;17(3):146-59. (PMID: 26875679)
Genetics. 2017 Apr;205(4):1587-1596. (PMID: 28159753)
J Vector Borne Dis. 2017 Jan-Mar;54(1):4-15. (PMID: 28352041)
PLoS One. 2011 Jan 25;6(1):e14587. (PMID: 21283619)
Nat Biotechnol. 2018 Dec;36(11):1062-1066. (PMID: 30247490)
Nature. 2015 Oct 8;526(7572):207-211. (PMID: 26375008)
Am J Trop Med Hyg. 2018 Jun;98(6_Suppl):1-49. (PMID: 29882508)
Nat Biotechnol. 2011 Oct 30;29(11):1034-7. (PMID: 22037376)
PLoS Pathog. 2017 Jan 17;13(1):e1006113. (PMID: 28095489)
Pathog Glob Health. 2013 Jun;107(4):170-9. (PMID: 23816508)
Nature. 2002 May 23;417(6887):452-5. (PMID: 12024215)
Parasit Vectors. 2018 Oct 22;11(1):550. (PMID: 30348209)
Malar J. 2011 Oct 17;10:303. (PMID: 21999664)
Pathog Glob Health. 2017 Dec;111(8):424-435. (PMID: 29385893)
Nat Commun. 2020 Mar 18;11(1):1425. (PMID: 32188851)
PLoS Comput Biol. 2020 Aug 14;16(8):e1008121. (PMID: 32797077)
Elife. 2021 Apr 13;10:. (PMID: 33845943)
PLoS Genet. 2017 Oct 4;13(10):e1007039. (PMID: 28976972)
PLoS One. 2013 Jul 18;8(7):e68679. (PMID: 23874719)
المشرفين على المادة: 0 (Insecticides)
تواريخ الأحداث: Date Created: 20220726 Date Completed: 20220728 Latest Revision: 20220731
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC9327287
DOI: 10.1186/s12936-022-04242-2
PMID: 35883100
قاعدة البيانات: MEDLINE
الوصف
تدمد:1475-2875
DOI:10.1186/s12936-022-04242-2