دورية أكاديمية

Comparison of PMT-based TF64 and SiPM-based Vereos PET/CT systems for 90 Y imaging and dosimetry optimization: A quantitative study.

التفاصيل البيبلوغرافية
العنوان: Comparison of PMT-based TF64 and SiPM-based Vereos PET/CT systems for 90 Y imaging and dosimetry optimization: A quantitative study.
المؤلفون: Trotta N; Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium., Collette B; Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium., Mathey C; Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium., Vierasu I; Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium., Bucalau AM; Department of Gastroenterology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium., Verset G; Department of Gastroenterology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium., Moreno-Reyes R; Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium., Goldman S; Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.
المصدر: Medical physics [Med Phys] 2022 Dec; Vol. 49 (12), pp. 7567-7582. Date of Electronic Publication: 2022 Aug 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley and Sons, Inc Country of Publication: United States NLM ID: 0425746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2473-4209 (Electronic) Linking ISSN: 00942405 NLM ISO Abbreviation: Med Phys Subsets: MEDLINE
أسماء مطبوعة: Publication: 2017- : Hoboken, NJ : John Wiley and Sons, Inc.
Original Publication: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics.
مواضيع طبية MeSH: Positron Emission Tomography Computed Tomography* , Liver Neoplasms*/radiotherapy, Humans ; Positron-Emission Tomography/methods ; Radiometry/methods ; Phantoms, Imaging ; Yttrium Radioisotopes/therapeutic use
مستخلص: Background: Selective internal radiotherapy based on transarterial radioembolization (TARE) with yttrium-90 ( 90 Y) microspheres is an established treatment for primary or metastatic liver disease.
Purpose: The objective of this work is to optimize the dosimetry of patients treated with 90 Y TARE, using positron emission tomography (PET) images.
Methods: The NEMA 2012 PET phantom was filled with nearly 3.9 GBq of 90 Y activity and acquired at days 0, 3, 5, 7, and 9 on a classic time-of-flight PET/computed tomography (CT) scanner (Philips TF64) and on a silicon photomultiplier (SiPM)-based PET/CT scanner (Philips Vereos). Acquisitions were carried on following the guidelines proposed in a previously published multicentric trial and images were reconstructed by varying and combining the available parameters. Comparisons were performed to identify the best set(s) of parameters leading to the most accurate 90 Y-PET image(s), in terms of activity distribution. Then, for both scanners, the best images were analyzed with Simplicit 90 Y, a personalized dosimetry software using multicompartmental Medical Internal Radiation Dose model. The comparison between measured and true doses allowed to identify the image granting the most consistent dose estimations and, therefore, to designate the set of parameters to be applied on patients' data for the reconstruction of optimized clinical images. Posttreatment dosimetry of four patients was then realized with Simplicit 90 Y using optimized imaging datasets.
Results: Based on activity distribution comparisons and dose estimations over phantom and patients data, the SiPM-based PET/CT system appeared more suitable than the photomultiplier tube-based TF64 for 90 Y-PET imaging. With the SiPM-based PET/CT system, reconstructed images with a 2-mm voxel size combined with the application of the point spread function correction led to the most accurate results for quantitative 90 Y measures.
Conclusions: For the SiPM-based PET/CT scanner, an optimized set of reconstruction parameters has been identified and applied on patients' data in order to generate the most accurate image to be used for an improved personalized 90 Y-PET dosimetry, ensuring a reliable evaluation of the delivered doses.
(© 2022 American Association of Physicists in Medicine.)
References: Belgian Cancer Registry, « Cancer Fact Sheet - Liver Cancer - ICD10 : C22. Cancer_Fact_Sheet_Livercancer_2016.pdf. Published online 2016. Accessed June 24, 2021. http://kankerregister.org/media/docs/CancerFactSheets/2016/Cancer_Fact_Sheet_Livercancer_2016.pdf.
Vilgrain V, Pereira H, Assenat E, et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2017;18(12):1624-1636. https://doi.org/10.1016/S1470-2045(17)30683-6.
Chow PKH, Gandhi M, Tan SB, et al. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol. 2018;36(19):1913-1921. https://doi.org/10.1200/JCO.2017.76.0892.
Ricke J, Sangro B, Amthauer H, et al. The impact of combining selective internal radiation therapy (SIRT) with sorafenib on overall survival in patients with advanced hepatocellular carcinoma: the SORAMIC trial palliative cohort. Ann Oncol. 2018;29:v110. https://doi.org/10.1093/annonc/mdy149.028.
Murthy R, Nunez R, Szklaruk J, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25(suppl 1):S41-S55. https://doi.org/10.1148/rg.25si055515.
Cremonesi M, Chiesa C, Strigari L, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;4:210. https://doi.org/10.3389/fonc.2014.00210.
Garin E, Lenoir L, Rolland Y, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53(2):255-263. https://doi.org/10.2967/jnumed.111.094235.
Garin E, Tselikas L, Guiu B, et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol. 2021;6(1):17-29. https://doi.org/10.1016/S2468-1253(20)30290-9.
Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997;24(3):293-298. https://doi.org/10.1007/BF01728766.
Ho S, Lau WY, Leung TW, et al. Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol. 1997;70(836):823-828. https://doi.org/10.1259/bjr.70.836.9486047.
Salem R, Lewandowski RJ, Atassi B, et al. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J Vasc Interv Radiol, JVIR. 2005;16(12):1627-1639. https://doi.org/10.1097/01.RVI.0000184594.01661.81.
Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med. 1994;35(8):1381-1389.
Elschot M, Nijsen JFW, Dam AJ, de Jong HWAM. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS One. 2011;6(11):e26174. https://doi.org/10.1371/journal.pone.0026174.
Yue J, Mauxion T, Reyes DK, et al. Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer. Med Phys. 2016;43(10):5779. https://doi.org/10.1118/1.4962472.
Porter CA, Bradley KM, Hippeläinen ET, Walker MD, McGowan DR. Phantom and clinical evaluation of the effect of full Monte Carlo collimator modelling in post-SIRT yttrium-90 bremsstrahlung SPECT imaging. EJNMMI Res. 2018;8(1):7. https://doi.org/10.1186/s13550-018-0361-0.
Lhommel R, Goffette P, Van den Eynde M, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36(10):1696. https://doi.org/10.1007/s00259-009-1210-1.
Pasciak AS, Bourgeois AC, McKinney JM, et al. Radioembolization and the dynamic role of (90)Y PET/CT. Front Oncol. 2014;4:38. https://doi.org/10.3389/fonc.2014.00038.
Attarwala AA, Molina-Duran F, Büsing KA, et al. Quantitative and qualitative assessment of yttrium-90 PET/CT imaging. PLoS One. 2014;9(11):e110401. https://doi.org/10.1371/journal.pone.0110401.
Tapp KN, Lea WB, Johnson MS, Tann M, Fletcher JW, Hutchins GD. The impact of image reconstruction bias on PET/CT 90Y dosimetry after radioembolization. J Nucl Med. 2014;55(9):1452-1458. https://doi.org/10.2967/jnumed.113.133629.
D'Arienzo M. Emission of β+ particles via internal pair production in the 0+ - 0+ transition of 90Zr: historical background and current applications in nuclear medicine imaging. Atoms. 2013;1(1):2-12. https://doi.org/10.3390/atoms1010002.
van Elmbt L, Vandenberghe S, Walrand S, Pauwels S, Jamar F. Comparison of yttrium-90 quantitative imaging by TOF and non-TOF PET in a phantom of liver selective internal radiotherapy. Phys Med Biol. 2011;56(21):6759-6777. https://doi.org/10.1088/0031-9155/56/21/001.
Willowson KP, Tapner M, QUEST Investigator Team, Bailey DL. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : the QUEST Phantom Study. Eur J Nucl Med Mol Imaging. 2015;42(8):1202-1222. https://doi.org/10.1007/s00259-015-3059-9.
ICW-3000™ Water Purification System - Other Products. Accessed September 28, 2021. https://www.merckmillipore.com/BE/en/product/ICW-3000-Water-Purification-System,MM_NF-C85500.
Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471-480.
Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res. 2018;8(1):97. https://doi.org/10.1186/s13550-018-0448-7.
Walrand S, Hesse M, Jamar F, Lhommel R. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization. Phys Med Biol. 2018;63(7):075016. https://doi.org/10.1088/1361-6560/aab4e9.
Snyder DL, Miller MI. The use of sieves to stabilize images produced with the EM algorithm for emission tomography. IEEE Trans Nucl Sci. 1985;32:3864-3872.
Golla S, Lammertsma A, Boellaard R. Performance of the resolution recovery method on the ingenuity PET/CT. J Nucl Med. 2015;56(suppl 3):1836-1836.
Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601-609. https://doi.org/10.1109/42.363108.
Morey AM, Kadrmas DJ. Effect of varying number of OSEM subsets on PET lesion detectability. J Nucl Med Technol. 2013;41(4):268-273. https://doi.org/10.2967/jnmt.113.131904.
Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932-945. https://doi.org/10.2967/jnumed.106.035774.
Kao YH, Steinberg JD, Tay YS, et al. Post-radioembolization yttrium-90 PET/CT - Part 1: Diagnostic reporting. EJNMMI Res. 2013;3(1):56. https://doi.org/10.1186/2191-219X-3-56.
Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med. 2006;47(7):1209-1211.
Weber M, Lam M, Chiesa C, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393-1406. https://doi.org/10.1007/s00259-021-05600-z. Published online February 11, 2022.
Accorsi R, Adam LE, Werner ME, Karp JS. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol. 2004;49(12):2577-2598. https://doi.org/10.1088/0031-9155/49/12/008.
Ye J, Song X, Hu Z. Scatter correction with combined single-scatter simulation and Monte Carlo simulation for 3D PET. In: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2014:1-3. https://doi.org/10.1109/NSSMIC.2014.7431033.
Goedicke A, Berker Y, Verburg FA, Behrendt FF, Winz O, Mottaghy FM. Study-parameter impact in quantitative 90-yttrium PET imaging for radioembolization treatment monitoring and dosimetry. IEEE Trans Med Imaging. 2013;32(3):485-492. https://doi.org/10.1109/TMI.2012.2221135.
Scott NP, McGowan DR. Optimising quantitative 90Y PET imaging: an investigation into the effects of scan length and Bayesian penalised likelihood reconstruction. EJNMMI Res. 2019;9(1):40. https://doi.org/10.1186/s13550-019-0512-y.
Duan H, Khalaf MH, Ferri V, et al. High quality imaging and dosimetry for yttrium-90 (90Y) liver radioembolization using a SiPM-based PET/CT scanner. Eur J Nucl Med Mol Imaging. 2021;48(8):2426-2436. https://doi.org/10.1007/s00259-021-05188-4.
D'Arienzo M, Pimpinella M, Capogni M, et al. Phantom validation of quantitative Y-90 PET/CT-based dosimetry in liver radioembolization. EJNMMI Res. 2017;7(1):94. https://doi.org/10.1186/s13550-017-0341-9.
Kao YH, Luddington OS, Culleton SR, Francis RJ, Boucek JA. A gelatin liver phantom of suspended 90Y resin microspheres to simulate the physiologic microsphere biodistribution of a postradioembolization liver. J Nucl Med Technol. 2014;42(4):265-268. https://doi.org/10.2967/jnmt.114.145292.
Gnesin S, Leite Ferreira P, Malterre J, Laub P, Prior JO, Verdun FR. Phantom validation of Tc-99m absolute quantification in a SPECT/CT commercial device. Comput Math Methods Med. 2016;2016:4360371. https://doi.org/10.1155/2016/4360371.
فهرسة مساهمة: Keywords: 90Y-selective internal radiotherapy; image reconstruction optimization; personalized dosimetry; positron emission tomography
المشرفين على المادة: 0 (Yttrium Radioisotopes)
تواريخ الأحداث: Date Created: 20220727 Date Completed: 20221227 Latest Revision: 20221230
رمز التحديث: 20231215
DOI: 10.1002/mp.15880
PMID: 35894818
قاعدة البيانات: MEDLINE
الوصف
تدمد:2473-4209
DOI:10.1002/mp.15880