دورية أكاديمية

New tricks and emerging applications from contemporary azobenzene research.

التفاصيل البيبلوغرافية
العنوان: New tricks and emerging applications from contemporary azobenzene research.
المؤلفون: Fedele C; Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland., Ruoko TP; Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland., Kuntze K; Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland., Virkki M; Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland., Priimagi A; Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland. arri.priimagi@tuni.fi.
المصدر: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology [Photochem Photobiol Sci] 2022 Oct; Vol. 21 (10), pp. 1719-1734. Date of Electronic Publication: 2022 Jul 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: England NLM ID: 101124451 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1474-9092 (Electronic) Linking ISSN: 1474905X NLM ISO Abbreviation: Photochem Photobiol Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2021- : [London] : Springer
Original Publication: Cambridge, UK : Royal Society of Chemistry, c2002-
مواضيع طبية MeSH: Azo Compounds*/chemistry , Coloring Agents*, Photochemistry
مستخلص: Azobenzenes have many faces. They are well-known as dyes, but most of all, azobenzenes are versatile photoswitchable molecules with powerful photochemical properties. Azobenzene photochemistry has been extensively studied for decades, but only relatively recently research has taken a steer towards applications, ranging from photonics and robotics to photobiology. In this perspective, after an overview of the recent trends in the molecular design of azobenzenes, we highlight three research areas where the azobenzene photoswitches may bring about promising technological innovations: chemical sensing, organic transistors, and cell signaling. Ingenious molecular designs have enabled versatile control of azobenzene photochemical properties, which has in turn facilitated the development of chemical sensors and photoswitchable organic transistors. Finally, the power of azobenzenes in biology is exemplified by vision restoration and photactivation of neural signaling. Although the selected examples reveal only some of the faces of azobenzenes, we expect the fields presented to develop rapidly in the near future, and that azobenzenes will play a central role in this development.
(© 2022. The Author(s).)
References: Jerca, F. A., Jerca, V. V., & Hoogenboom, R. (2022). Advances and opportunities in the exciting world of azobenzenes. Nature Reviews Chemistry, 6(1), 51–69. https://doi.org/10.1038/s41570-021-00334-w. (PMID: 10.1038/s41570-021-00334-w)
Goulet-Hanssens, A., Eisenreich, F., & Hecht, S. (2020). Enlightening materials with photoswitches. Advanced Materials, 32(20), e1905966. https://doi.org/10.1002/adma.201905966. (PMID: 10.1002/adma.20190596631975456)
Oscurato, S. L., Salvatore, M., Maddalena, P., & Ambrosio, A. (2018). From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics, 7(8), 1387–1422. https://doi.org/10.1515/nanoph-2018-0040. (PMID: 10.1515/nanoph-2018-0040)
Chang, V. Y., Fedele, C., Priimagi, A., Shishido, A., & Barrett, C. J. (2019). Photoreversible soft azo dye materials: Toward optical control of bio-interfaces. Advanced Optical Materials, 7(16), 1900091. https://doi.org/10.1002/adom.201900091. (PMID: 10.1002/adom.201900091)
Broichhagen, J., Frank, J. A., & Trauner, D. (2015). A roadmap to success in photopharmacology. Accounts of chemical research, 48(7), 1947–1960. https://doi.org/10.1021/acs.accounts.5b00129. (PMID: 10.1021/acs.accounts.5b0012926103428)
Hull, K., Morstein, J., & Trauner, D. (2018). In vivo photopharmacology. Chemical reviews, 118(21), 10710–10747. https://doi.org/10.1021/acs.chemrev.8b00037. (PMID: 10.1021/acs.chemrev.8b0003729985590)
del Barrio, J., & Sánchez-Somolinos, C. (2019). Light to shape the future: From photolithography to 4D printing. Advanced Optical Materials, 7(16), 1900598. https://doi.org/10.1002/adom.201900598. (PMID: 10.1002/adom.201900598)
Xu, G. F., Li, S. X., Liu, C. W., & Wu, S. (2020). Photoswitchable adhesives using azobenzene-containing materials. Chemistry-an Asian Journal, 15(5), 547–554. https://doi.org/10.1002/asia.201901655. (PMID: 10.1002/asia.20190165531885144)
Mahimwalla, Z., Yager, K. G., Mamiya, J.-I., Shishido, A., Priimagi, A., & Barrett, C. J. (2012). Azobenzene photomechanics: Prospects and potential applications. Polymer Bulletin, 69(8), 967–1006. https://doi.org/10.1007/s00289-012-0792-0. (PMID: 10.1007/s00289-012-0792-0)
Lancia, F., Ryabchun, A., & Katsonis, N. (2019). Life-like motion driven by artificial molecular machines. Nature Reviews Chemistry, 3(9), 536–551. https://doi.org/10.1038/s41570-019-0122-2. (PMID: 10.1038/s41570-019-0122-2)
Ube, T., & Ikeda, T. (2014). Photomobile polymer materials with crosslinked liquid-crystalline structures: Molecular design, fabrication, and functions. Angewandte Chemie International Edition, 53(39), 10290–10299. https://doi.org/10.1002/anie.201400513. (PMID: 10.1002/anie.20140051325196371)
Wie, J. J., Shankar, M. R., & White, T. J. (2016). Photomotility of polymers. Nature Communications, 7(1), 13260. https://doi.org/10.1038/ncomms13260. (PMID: 10.1038/ncomms13260278307075109552)
Gelebart, A. H., Jan, M. D., Varga, M., Konya, A., Vantomme, G., Meijer, E. W., et al. (2017). Making waves in a photoactive polymer film. Nature, 546(7660), 632–636. https://doi.org/10.1038/nature22987. (PMID: 10.1038/nature22987286582255495175)
Jeon, J., Choi, J. C., Lee, H., Cho, W., Lee, K., Kim, J. G., et al. (2021). Continuous and programmable photomechanical jumping of polymer monoliths. Materials Today, 49, 97–106. https://doi.org/10.1016/j.mattod.2021.04.014. (PMID: 10.1016/j.mattod.2021.04.014)
Rekola, H., Berdin, A., Fedele, C., Virkki, M., & Priimagi, A. (2020). Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films. Scientific Reports, 10(1), 19642. https://doi.org/10.1038/s41598-020-76573-6. (PMID: 10.1038/s41598-020-76573-6331843877665031)
Lim, Y., Kang, B., Hong, S. J., Son, H., Im, E., Bang, J., et al. (2021). A field guide to azopolymeric optical fourier surfaces and augmented reality. Advanced Functional Materials, 31(39), 2104105. https://doi.org/10.1002/adfm.202104105. (PMID: 10.1002/adfm.202104105)
Oscurato, S. L., Reda, F., Salvatore, M., Borbone, F., Maddalena, P., & Ambrosio, A. (2021). Shapeshifting diffractive optical devices. Laser & Photonics Reviews. https://doi.org/10.1002/lpor.202100514. (PMID: 10.1002/lpor.202100514)
Crespi, S., Simeth, N. A., & Koinig, B. (2019). Heteroaryl azo dyes as molecular photoswitches. Nature Reviews Chemistry, 3(3), 133–146. https://doi.org/10.1038/s41570-019-0074-6. (PMID: 10.1038/s41570-019-0074-6)
Dong, M., Babalhavaeji, A., Collins, C. V., Jarrah, K., Sadovski, O., Dai, Q., et al. (2017). Near-infrared photoswitching of azobenzenes under physiological conditions. Journal of the America Chemical Society, 139(38), 13483–13486. https://doi.org/10.1021/jacs.7b06471. (PMID: 10.1021/jacs.7b06471)
Dokic, J., Gothe, M., Wirth, J., Peters, M. V., Schwarz, J., Hecht, S., et al. (2009). Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: Substituent effects, solvent effects, and comparison to experimental data. Journal of Physical Chemistry A, 113(24), 6763–6773. https://doi.org/10.1021/jp9021344. (PMID: 10.1021/jp902134419453149)
Kienzler, M. A., Reiner, A., Trautman, E., Yoo, S., Trauner, D., & Isacoff, E. Y. (2013). A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. Journal of the American Chemical Society, 135(47), 17683–17686. https://doi.org/10.1021/ja408104w. (PMID: 10.1021/ja408104w241715113990231)
Yesodha, S. K., Pillai, C. K. S., & Tsutsumi, N. (2004). Stable polymeric materials for nonlinear optics: A review based on azobenzene systems. Progress in Polymer Science, 29(1), 45–74. https://doi.org/10.1016/j.progpolymsci.2003.07.002. (PMID: 10.1016/j.progpolymsci.2003.07.002)
Priimagi, A., & Shevchenko, A. (2014). Azopolymer-based micro- and nanopatterning for photonic applications. Journal of Polymer Science Part B-Polymer Physics, 52(3), 163–182. https://doi.org/10.1002/polb.23390. (PMID: 10.1002/polb.23390)
Eom, T., & Khan, A. (2021). Push-pull azobenzene chromophores with negative halochromism. Dyes and Pigments, 188, 109197. https://doi.org/10.1016/j.dyepig.2021.109197. (PMID: 10.1016/j.dyepig.2021.109197)
Siewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Nather, C., Renth, F., et al. (2009). Highly efficient reversible Z− E photoisomerization of a bridged azobenzene with visible light through resolved S1 (nπ*) absorption bands. Journal of the American Chemical Society, 131(43), 15594–15595. https://doi.org/10.1021/ja906547d. (PMID: 10.1021/ja906547d19827776)
Beharry, A. A., Sadovski, O., & Woolley, G. A. (2011). Azobenzene Photoswitching without Ultraviolet Light. Journal of the American Chemical Society, 133(49), 19684–19687. https://doi.org/10.1021/ja209239m. (PMID: 10.1021/ja209239m22082305)
Knie, C., Utecht, M., Zhao, F. L., Kulla, H., Kovalenko, S., Brouwer, A. M., et al. (2014). ortho-Fluoroazobenzenes: Visible Light Switches with Very Long-Lived Z Isomers. Chemistry-A European Journal, 20(50), 16492–16501. https://doi.org/10.1002/chem.201404649. (PMID: 10.1002/chem.20140464925352421)
Bléger, D., Schwarz, J., Brouwer, A. M., & Hecht, S. (2012). o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. Journal of the American Chemical Society, 134(51), 20597–20600. https://doi.org/10.1021/ja310323y. (PMID: 10.1021/ja310323y23236950)
Ditter, D., Braun, L. B., & Zentel, R. (2020). Influences of ortho-fluoroazobenzenes on liquid crystalline phase stability and 2D (Planar) actuation properties of liquid crystalline elastomers. Macromolecular Chemistry and Physics, 221(1), 1900265. https://doi.org/10.1002/macp.201900265. (PMID: 10.1002/macp.201900265)
Leistner, A. L., Kirchner, S., Karcher, J., Bantle, T., Schulte, M. L., Godtel, P., et al. (2021). Fluorinated azobenzenes switchable with red light. Chemistry-A European Journal, 27(31), 8094–8099. https://doi.org/10.1002/chem.202005486. (PMID: 10.1002/chem.20200548633769596)
Wegener, M., Hansen, M. J., Driessen, A. J. M., Szymanski, W., & Feringa, B. L. (2017). Photocontrol of antibacterial activity: Shifting from UV to red light activation. Journal of the American Chemical Society, 139(49), 17979–17986. https://doi.org/10.1021/jacs.7b09281. (PMID: 10.1021/jacs.7b09281291363735730949)
Lameijer, L. N., Budzak, S., Simeth, N. A., Hansen, M. J., Feringa, B. L., Jacquemin, D., et al. (2020). General principles for the design of visible-light-responsive photoswitches: Tetra-ortho-chloro-azobenzenes. Angewandte Chemie International Edition, 59(48), 21663–21670. https://doi.org/10.1002/anie.202008700. (PMID: 10.1002/anie.20200870033462976)
Konrad, D. B., Frank, J. A., & Trauner, D. (2016). Synthesis of redshifted azobenzene photoswitches by late-stage functionalization. Chemistry-a European Journal, 22(13), 4364–4368. https://doi.org/10.1002/chem.201505061. (PMID: 10.1002/chem.20150506126889884)
Konrad, D. B., Savasci, G., Allmendinger, L., Trauner, D., Ochsenfeld, C., & Ali, A. M. (2020). Computational design and synthesis of a deeply red-shifted and bistable azobenzene. Journal of the American Chemical Society, 142(14), 6538–6547. https://doi.org/10.1021/jacs.9b10430. (PMID: 10.1021/jacs.9b10430322079437307923)
Ahmed, Z., Siiskonen, A., Virkki, M., & Priimagi, A. (2017). Controlling azobenzene photoswitching through combined ortho-fluorination and -amination. Chemical Communications, 53(93), 12520–12523. https://doi.org/10.1039/c7cc07308a. (PMID: 10.1039/c7cc07308a29026898)
Kuntze, K., Viljakka, J., Titov, E., Ahmed, Z., Kalenius, E., Saalfrank, P., et al. (2022). Towards low-energy-light-driven bistable photoswitches: Ortho-fluoroaminoazobenzenes. Photochemical & Photobiological Sciences, 21(2), 159–173. https://doi.org/10.1007/s43630-021-00145-4. (PMID: 10.1007/s43630-021-00145-4)
Galvan-Gonzalez, A., Canva, M., Stegeman, G. I., Sukhomlinova, L., Twieg, R. J., Chan, K. P., et al. (2000). Photodegradation of azobenzene nonlinear optical chromophores: The influence of structure and environment. Journal of the Optical Society of America B-Optical Physics, 17(12), 1992–2000. https://doi.org/10.1364/Josab.17.001992. (PMID: 10.1364/Josab.17.001992)
Ali, A. M., & Al-Saigh, Z. Y. (1980). Photodecomposition of azobenzenes. Journal of Chemical Technology and Biotechnology, 30(1), 440–446. https://doi.org/10.1002/jctb.503300155. (PMID: 10.1002/jctb.503300155)
Nishimura, N., Sueyoshi, T., Yamanaka, H., Imai, E., Yamamoto, S., & Hasegawa, S. (1976). Thermal cis-to-trans isomerization of substituted azobenzenes II. Substituent and solvent effects. Bulletin of the Chemical Society of Japan, 49(5), 1381–1387. https://doi.org/10.1246/bcsj.49.1381. (PMID: 10.1246/bcsj.49.1381)
Singh, G., Raj, P., Singh, H., & Singh, N. (2018). Colorimetric detection and ratiometric quantification of mercury(ii) using azophenol dye: "dip & read’ based handheld prototype device development. Journal of Materials Chemistry C, 6(46), 12728–12738. https://doi.org/10.1039/c8tc04720k. (PMID: 10.1039/c8tc04720k)
Mabhai, S., Dolai, M., Dey, S., Dhara, A., Das, B., & Jana, A. (2018). A novel chemosensor based on rhodamine and azobenzene moieties for selective detection of Al 3+ ions. New Journal of Chemistry, 42(12), 10191–10201. https://doi.org/10.1039/C8NJ00436F. (PMID: 10.1039/C8NJ00436F)
Zhang, Y., Wang, Y. T., Kang, X. X., Ge, M., Feng, H. Y., Han, J., et al. (2018). Azobenzene disperse dye-based colorimetric probe for naked eye detection of Cu2+ in aqueous media: Spectral properties, theoretical insights, and applications. Journal of Photochemistry and Photobiology a-Chemistry, 356, 652–660. https://doi.org/10.1016/j.jphotochem.2017.07.049. (PMID: 10.1016/j.jphotochem.2017.07.049)
Wang, Y. T., Hu, S., Zhang, Y., Gong, H., Sun, R., Mao, W., et al. (2018). A colorimetric Pb2+ chemosensor: Rapid naked-eye detection, high selectivity, theoretical insights, and applications. Journal of Photochemistry and Photobiology a-Chemistry, 355, 101–108. https://doi.org/10.1016/j.jphotochem.2017.10.027. (PMID: 10.1016/j.jphotochem.2017.10.027)
Egawa, Y., Miki, R., & Seki, T. (2014). Colorimetric sugar sensing using boronic acid-substituted azobenzenes. Materials, 7(2), 1201–1220. https://doi.org/10.3390/ma7021201. (PMID: 10.3390/ma7021201287885105453098)
Gholami, M. D., Manzhos, S., Sonar, P., Ayoko, G. A., & Izake, E. L. (2019). Dual chemosensor for the rapid detection of mercury(ii) pollution and biothiols. The Analyst, 144(16), 4908–4916. https://doi.org/10.1039/c9an01055f. (PMID: 10.1039/c9an01055f31312834)
Li, L., Zhou, N., & Zhao, Y. (2022). Azobenzene/acid binary systems for colorimetric humidity sensing with reversibility, high sensitivity, and tunable colors. ACS Applied Materials & Interfaces, 14(5), 7382–7391. https://doi.org/10.1021/acsami.1c24529. (PMID: 10.1021/acsami.1c24529)
Balamurugan, A., & Lee, H. I. (2015). Single molecular probe for multiple analyte sensing: Efficient and selective detection of mercury and fluoride ions. Sensors and Actuators B-Chemical, 216, 80–85. https://doi.org/10.1016/j.snb.2015.04.026. (PMID: 10.1016/j.snb.2015.04.026)
Cao, X., Li, Y., Yu, Y., Fu, S., Gao, A., & Chang, X. (2019). Multifunctional supramolecular self-assembly system for colorimetric detection of Hg 2+, Fe 3+, Cu 2+ and continuous sensing of volatile acids and organic amine gases. Nanoscale, 11(22), 10911–10920. (PMID: 10.1039/C9NR01433K)
Poutanen, M., Ahmed, Z., Rautkari, L., Ikkala, O., & Priimagi, A. (2018). Thermal isomerization of hydroxyazobenzenes as a platform for vapor sensing. ACS Macro Letters, 7(3), 381–386. https://doi.org/10.1021/acsmacrolett.8b00093. (PMID: 10.1021/acsmacrolett.8b00093296072445871339)
Chi, Z., Ran, X., Shi, L., Lou, J., Kuang, Y., & Guo, L. (2017). Molecular characteristics of a fluorescent chemosensor for the recognition of ferric ion based on photoresponsive azobenzene derivative. Spectrochim Acta A Molecular Biomolecular Spectroscopy, 171, 25–30. https://doi.org/10.1016/j.saa.2016.07.033. (PMID: 10.1016/j.saa.2016.07.033)
Li, Y., Wang, X., Yang, J., Xie, X., Li, M., Niu, J., et al. (2016). Fluorescent probe based on azobenzene-cyclopalladium for the selective imaging of endogenous carbon monoxide under hypoxia conditions. Analytical chemistry, 88(22), 11154–11159. https://doi.org/10.1021/acs.analchem.6b03376. (PMID: 10.1021/acs.analchem.6b0337627748113)
Ciccone, S., & Halpern, J. (1959). Catalysis of the cis-trans isomerization of azobenzene by acids and cupric salts. Canadian Journal of Chemistry, 37(11), 1903–1910. https://doi.org/10.1139/v59-278. (PMID: 10.1139/v59-278)
Angelini, G., Scotti, L., Aceto, A., & Gasbarri, C. (2019). Silver nanoparticles as interactive media for the azobenzenes isomerization in aqueous solution: From linear to stretched kinetics. Journal of Molecular Liquids, 284, 592–598. https://doi.org/10.1016/j.molliq.2019.04.048. (PMID: 10.1016/j.molliq.2019.04.048)
Yano, A., Sato, Y., Dachimba, K., & Yano, R. (2020). Catalysis of thermal isomerization of methyl yellow by salts. ACS Omega, 5(14), 7956–7961. https://doi.org/10.1021/acsomega.9b04342. (PMID: 10.1021/acsomega.9b04342323097057161051)
Yang, Y. Z., Tang, Q., Gong, C. B., Ma, X. B., Peng, J. D., & Lam, M. H. W. (2014). Ultrasensitive detection of bisphenol A in aqueous media using photoresponsive surface molecular imprinting polymer microspheres. New Journal of Chemistry, 38(4), 1780–1788. https://doi.org/10.1039/c3nj01598j. (PMID: 10.1039/c3nj01598j)
Dunn, N. J., Humphries, WHt., Offenbacher, A. R., King, T. L., & Gray, J. A. (2009). pH-Dependent cis-trans isomerization rates for azobenzene dyes in aqueous solution. The Journal of Physical Chemistry A, 113(47), 144–151. https://doi.org/10.1021/jp903102u. (PMID: 10.1021/jp903102u)
Trupp, S., Alberti, M., Carofiglio, T., Lubian, E., Lehmann, H., Heuermann, R., et al. (2010). Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sensors and Actuators B-Chemical, 150(1), 206–210. https://doi.org/10.1016/j.snb.2010.07.015. (PMID: 10.1016/j.snb.2010.07.015)
Lin, Y., Hansen, H. R., Brittain, W. J., & Craig, S. L. (2019). Strain-dependent kinetics in the cis-to-trans isomerization of azobenzene in bulk elastomers. The Journal of Physical Chemistry B, 123(40), 8492–8498. https://doi.org/10.1021/acs.jpcb.9b07088. (PMID: 10.1021/acs.jpcb.9b0708831525921)
Wakayama, Y., Hayakawa, R., Higashiguchi, K., & Matsuda, K. (2020). Photochromism for optically functionalized organic field-effect transistors: A comprehensive review. Journal of Materials Chemistry C, 8(32), 10956–10974. https://doi.org/10.1039/d0tc02683b. (PMID: 10.1039/d0tc02683b)
Xu, C., Zhang, J. J., Xu, W., & Tian, H. (2021). Multifunctional organic field effect transistors constructed with photochromic molecules. Materials Chemistry Frontiers, 5(3), 1060–1075. https://doi.org/10.1039/d0qm00567c. (PMID: 10.1039/d0qm00567c)
Fu, L. N., Leng, B., Li, Y. S., & Gao, X. K. (2016). Photoresponsive organic field-effect transistors involving photochromic molecules. Chinese Chemical Letters, 27(8), 1319–1329. https://doi.org/10.1016/j.cclet.2016.06.045. (PMID: 10.1016/j.cclet.2016.06.045)
Leydecker, T., Herder, M., Pavlica, E., Bratina, G., Hecht, S., Orgiu, E., et al. (2016). Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nature Nanotechnology, 11(9), 769–775. https://doi.org/10.1038/nnano.2016.87. (PMID: 10.1038/nnano.2016.8727323302)
Matsumoto, M., Miyazaki, D., Tanaka, M., Azumi, R., Manda, E., Kondo, Y., et al. (1998). Reversible light-induced morphological change in Langmuir-Blodgett films. Journal of the American Chemical Society, 120(7), 1479–1484. https://doi.org/10.1021/ja970577p. (PMID: 10.1021/ja970577p)
Wakayama, Y., Hayakawa, R., & Seo, H. S. (2014). Recent progress in photoactive organic field-effect transistors. Science and Technology of Advanced Materials, 15(2), 024202. https://doi.org/10.1088/1468-6996/15/2/024202. (PMID: 10.1088/1468-6996/15/2/024202278776555090406)
Crivillers, N., Orgiu, E., Reinders, F., Mayor, M., & Samori, P. (2011). Optical modulation of the charge injection in an organic field-effect transistor based on photochromic self-assembled-monolayer-functionalized electrodes. Advanced Materials, 23(12), 1447–1452. https://doi.org/10.1002/adma.201003736. (PMID: 10.1002/adma.20100373621433111)
Raimondo, C., Crivillers, N., Reinders, F., Sander, F., Mayor, M., & Samori, P. (2012). Optically switchable organic field-effect transistors based on photoresponsive gold nanoparticles blended with poly(3-hexylthiophene). Proceedings of the National Academy of Sciences, 109(31), 12375–12380. https://doi.org/10.1073/pnas.1203848109. (PMID: 10.1073/pnas.1203848109)
Tseng, C. W., Huang, D. C., & Tao, Y. T. (2012). Electric bistability induced by incorporating self-assembled monolayers/aggregated clusters of azobenzene derivatives in pentacene-based thin-film transistors. ACS Applied Materials & Interfaces, 4(10), 5483–5491. https://doi.org/10.1021/am3013906. (PMID: 10.1021/am3013906)
Tseng, C. W., Huang, D. C., & Tao, Y. T. (2013). Azobenzene-functionalized gold nanoparticles as hybrid double-floating-gate in pentacene thin-film transistors/memories with enhanced response, retention, and memory windows. ACS Applied Materials & Interfaces, 5(19), 9528–9536. https://doi.org/10.1021/am4023253. (PMID: 10.1021/am4023253)
Lee, K. E., Lee, J. U., Seong, D. G., Um, M. K., & Lee, W. (2016). Highly sensitive ultraviolet light sensor based on photoactive organic gate dielectrics with an azobenzene derivative. Journal of Physical Chemistry C, 120(40), 23172–23179. https://doi.org/10.1021/acs.jpcc.6b08427. (PMID: 10.1021/acs.jpcc.6b08427)
Arlt, M., Scheffler, A., Suske, I., Eschner, M., Saragi, T. P., Salbeck, J., et al. (2010). Bipolar redox behaviour, field-effect mobility and transistor switching of the low-molecular azo glass AZOPD. Physical Chemistry Chemical Physics, 12(41), 13828–13834. https://doi.org/10.1039/c0cp00643b. (PMID: 10.1039/c0cp00643b20852800)
Nakagawa, M., Akutsu, H., Yamada, J., Karakawa, M., Aso, Y., Fall, S., et al. (2012). A spin-carrying naphthalenediimide derivative with azobenzene unit. Chemistry Letters, 41(2), 175–177. https://doi.org/10.1246/cl.2012.175. (PMID: 10.1246/cl.2012.175)
Chen, Y., Li, C., Xu, X., Liu, M., He, Y., Murtaza, I., et al. (2017). Thermal and optical modulation of the carrier mobility in OTFTs based on an azo-anthracene liquid crystal organic semiconductor. ACS Applied Materials and Interfaces, 9(8), 7305–7314. https://doi.org/10.1021/acsami.6b13500. (PMID: 10.1021/acsami.6b1350028146346)
Tian, J. W., Fu, L. L., Liu, Z. T., Geng, H., Sun, Y. N., Lin, G. B., et al. (2019). Optically tunable field effect transistors with conjugated polymer entailing azobenzene groups in the side chains. Advanced Functional Materials, 29(12), 1807176. https://doi.org/10.1002/adfm.201807176. (PMID: 10.1002/adfm.201807176)
Tian, J., Liu, Z., Wu, C., Jiang, W., Chen, L., Shi, D., et al. (2021). Simultaneous incorporation of two types of azo-groups in the side chains of a conjugated D-A polymer for logic control of the semiconducting performance by light irradiation. Advanced Materials, 33(8), e2005613. https://doi.org/10.1002/adma.202005613. (PMID: 10.1002/adma.20200561333448055)
Tang, Z., George, A., Winter, A., Kaiser, D., Neumann, C., Weimann, T., et al. (2020). Optically triggered control of the charge carrier density in chemically functionalized graphene field effect transistors. Chemistry-a European Journal, 26(29), 6473–6478. https://doi.org/10.1002/chem.202000431. (PMID: 10.1002/chem.20200043132150652)
Zhao, Y., Huang, C., Kim, M., Wong, B. M., Leonard, F., Gopalan, P., et al. (2013). Functionalization of single-wall carbon nanotubes with chromophores of opposite internal dipole orientation. ACS Applied Materials & Interfaces, 5(19), 9355–9361. https://doi.org/10.1021/am4024753. (PMID: 10.1021/am4024753)
Meng, L., Xin, N., Hu, C., Wang, J., Gui, B., Shi, J., et al. (2019). Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature communications, 10(1), 1450. https://doi.org/10.1038/s41467-019-09120-1. (PMID: 10.1038/s41467-019-09120-1309267856440973)
Lerch, M. M., Hansen, M. J., van Dam, G. M., Szymanski, W., & Feringa, B. L. (2016). Emerging targets in photopharmacology. Angewandte Chemie International Edition, 55(37), 10978–10999. https://doi.org/10.1002/anie.201601931. (PMID: 10.1002/anie.20160193127376241)
Dell’Orco, D., Koch, K.-W., & Rispoli, G. (2021). Where vision begins. Pflügers Archivies of European Journal of Physiology, 473(9), 1333–1337. https://doi.org/10.1007/s00424-021-02605-3. (PMID: 10.1007/s00424-021-02605-334245377)
Marc, R. E., & Jones, B. W. (2003). Retinal remodeling in inherited photoreceptor degenerations. Molecular Neurobiology, 28(2), 139–147. https://doi.org/10.1385/MN:28:2:139. (PMID: 10.1385/MN:28:2:13914576452)
Terakita, A. (2005). The opsins. Genome biology, 6(3), 213. https://doi.org/10.1186/gb-2005-6-3-213. (PMID: 10.1186/gb-2005-6-3-213157740361088937)
Chader, G. J., Weiland, J., & Humayun, M. S. (2009). Artificial vision: Needs, functioning, and testing of a retinal electronic prosthesis. Progress in brain research, 175, 317–332. https://doi.org/10.1016/S0079-6123(09)17522-2. (PMID: 10.1016/S0079-6123(09)17522-219660665)
Lamba, D. A., Karl, M. O., Ware, C. B., & Reh, T. A. (2006). Efficient generation of retinal progenitor cells from human embryonic stem cells. Proceedings of the National Academy of Sciences, 103(34), 12769–12774. https://doi.org/10.1073/pnas.0601990103. (PMID: 10.1073/pnas.0601990103)
Tomita, H., Sugano, E., Isago, H., Hiroi, T., Wang, Z., Ohta, E., et al. (2010). Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Experimental eye research, 90(3), 429–436. https://doi.org/10.1016/j.exer.2009.12.006. (PMID: 10.1016/j.exer.2009.12.00620036655)
Van Gelder, R. N. (2015). Photochemical approaches to vision restoration. Vision research, 111(Pt B), 134–141. https://doi.org/10.1016/j.visres.2015.02.001. (PMID: 10.1016/j.visres.2015.02.001256807584444397)
Fortin, D. L., Banghart, M. R., Dunn, T. W., Borges, K., Wagenaar, D. A., Gaudry, Q., et al. (2008). Photochemical control of endogenous ion channels and cellular excitability. Nature methods, 5(4), 331–338. https://doi.org/10.1038/nmeth.1187. (PMID: 10.1038/nmeth.1187183111462760097)
Tochitsky, I., Helft, Z., Meseguer, V., Fletcher, R. B., Vessey, K. A., Telias, M., et al. (2016). How azobenzene photoswitches restore visual responses to the blind retina. Neuron, 92(1), 100–113. https://doi.org/10.1016/j.neuron.2016.08.038. (PMID: 10.1016/j.neuron.2016.08.038276670065079435)
Mourot, A., Kienzler, M. A., Banghart, M. R., Fehrentz, T., Huber, F. M., Stein, M., et al. (2011). Tuning photochromic ion channel blockers. ACS chemical neuroscience, 2(9), 536–543. https://doi.org/10.1021/cn200037p. (PMID: 10.1021/cn200037p228601753401033)
Lei, B., & Yao, G. (2006). Spectral attenuation of the mouse, rat, pig and human lenses from wavelengths 360 nm to 1020 nm. Experimental eye research, 83(3), 610–614. https://doi.org/10.1016/j.exer.2006.02.013. (PMID: 10.1016/j.exer.2006.02.01316682025)
Izquierdo-Serra, M., Gascon-Moya, M., Hirtz, J. J., Pittolo, S., Poskanzer, K. E., Ferrer, E., et al. (2014). Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. Journal of American Chemical Society, 136(24), 8693–8701. https://doi.org/10.1021/ja5026326. (PMID: 10.1021/ja5026326)
Carroll, E. C., Berlin, S., Levitz, J., Kienzler, M. A., Yuan, Z., Madsen, D., et al. (2015). Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proceedings of the National Academy of Sciences, 112(7), E776–E785. https://doi.org/10.1073/pnas.1416942112. (PMID: 10.1073/pnas.1416942112)
Carmi, I., De Battista, M., Maddalena, L., Carroll, E. C., Kienzler, M. A., & Berlin, S. (2019). Holographic two-photon activation for synthetic optogenetics. Nature protocols, 14(3), 864–900. https://doi.org/10.1038/s41596-018-0118-2. (PMID: 10.1038/s41596-018-0118-230804570)
Passlick, S., Richers, M. T., & Ellis-Davies, G. C. R. (2018). Thermodynamically stable, photoreversible pharmacology in neurons with one- and two-photon excitation. Angewandte Chemie International Edition, 57(38), 12554–12557. https://doi.org/10.1002/anie.201807880. (PMID: 10.1002/anie.20180788030075062)
DiFrancesco, M. L., Lodola, F., Colombo, E., Maragliano, L., Bramini, M., Paterno, G. M., et al. (2020). Neuronal firing modulation by a membrane-targeted photoswitch. Nature Nanotechnologies, 15(4), 296–306. https://doi.org/10.1038/s41565-019-0632-6. (PMID: 10.1038/s41565-019-0632-6)
Goulet-Hanssens, A., Rietze, C., Titov, E., Abdullahu, L., Grubert, L., Saalfrank, P., et al. (2018). Hole catalysis as a general mechanism for efficient and wavelength-independent Z→ E azobenzene isomerization. Chem, 4(7), 1740–1755. https://doi.org/10.1016/j.chempr.2018.06.002. (PMID: 10.1016/j.chempr.2018.06.002)
معلومات مُعتمدة: 346107 Academy of Finland; 340103 Academy of Finland; 320165 Academy of Finland; 101022777 H2020 Marie Skłodowska-Curie Actions
فهرسة مساهمة: Keywords: Azobenzene; Chemical sensing; Organic transistors; Photoswitching; Vision restoration
المشرفين على المادة: F0U1H6UG5C (azobenzene)
0 (Azo Compounds)
0 (Coloring Agents)
تواريخ الأحداث: Date Created: 20220727 Date Completed: 20221025 Latest Revision: 20221025
رمز التحديث: 20231215
DOI: 10.1007/s43630-022-00262-8
PMID: 35896915
قاعدة البيانات: MEDLINE