دورية أكاديمية

Peripheral apoE4 enhances Alzheimer's pathology and impairs cognition by compromising cerebrovascular function.

التفاصيل البيبلوغرافية
العنوان: Peripheral apoE4 enhances Alzheimer's pathology and impairs cognition by compromising cerebrovascular function.
المؤلفون: Liu CC; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. liu.chiachen@mayo.edu., Zhao J; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Fu Y; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Inoue Y; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Ren Y; Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA., Chen Y; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Doss SV; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Shue F; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Jeevaratnam S; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Bastea L; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA., Wang N; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Martens YA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Qiao W; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Wang M; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA., Zhao N; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Jia L; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Yamazaki Y; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Yamazaki A; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Rosenberg CL; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Wang Z; Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA., Kong D; Department of Biology, University of North Dakota, Grand Forks, ND, USA., Li Z; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Kuchenbecker LA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Trottier ZA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Felton L; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Rogers J; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Quicksall ZS; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Linares C; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Knight J; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Chen Y; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Kurti A; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Kanekiyo T; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Fryer JD; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA., Asmann YW; Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA., Storz P; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA., Wang X; Department of Biology, University of North Dakota, Grand Forks, ND, USA., Peng J; Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA., Zhang B; Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Kim BYS; Department of Neurosurgery, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Bu G; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. Guojun.Bu@molecularneurodegeneration.org.
المصدر: Nature neuroscience [Nat Neurosci] 2022 Aug; Vol. 25 (8), pp. 1020-1033. Date of Electronic Publication: 2022 Aug 01.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: United States NLM ID: 9809671 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1726 (Electronic) Linking ISSN: 10976256 NLM ISO Abbreviation: Nat Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002->: New York, NY : Nature Publishing Group
Original Publication: New York, NY : Nature America Inc., c1998-
مواضيع طبية MeSH: Alzheimer Disease*/metabolism , Induced Pluripotent Stem Cells*/metabolism, Animals ; Apolipoprotein E3/genetics ; Apolipoprotein E3/metabolism ; Apolipoprotein E4/genetics ; Apolipoprotein E4/metabolism ; Apolipoproteins E/genetics ; Brain/metabolism ; Cognition ; Humans ; Mice ; Mice, Transgenic ; Protein Isoforms/metabolism
مستخلص: The ε4 allele of the apolipoprotein E (APOE) gene, a genetic risk factor for Alzheimer's disease, is abundantly expressed in both the brain and periphery. Here, we present evidence that peripheral apoE isoforms, separated from those in the brain by the blood-brain barrier, differentially impact Alzheimer's disease pathogenesis and cognition. To evaluate the function of peripheral apoE, we developed conditional mouse models expressing human APOE3 or APOE4 in the liver with no detectable apoE in the brain. Liver-expressed apoE4 compromised synaptic plasticity and cognition by impairing cerebrovascular functions. Plasma proteome profiling revealed apoE isoform-dependent functional pathways highlighting cell adhesion, lipoprotein metabolism and complement activation. ApoE3 plasma from young mice improved cognition and reduced vessel-associated gliosis when transfused into aged mice, whereas apoE4 compromised the beneficial effects of young plasma. A human induced pluripotent stem cell-derived endothelial cell model recapitulated the plasma apoE isoform-specific effect on endothelial integrity, further supporting a vascular-related mechanism. Upon breeding with amyloid model mice, liver-expressed apoE4 exacerbated brain amyloid pathology, whereas apoE3 reduced it. Our findings demonstrate pathogenic effects of peripheral apoE4, providing a strong rationale for targeting peripheral apoE to treat Alzheimer's disease.
(© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)
التعليقات: Comment in: Neurosci Bull. 2023 Aug;39(8):1330-1332. (PMID: 37093447)
References: Guo, T. et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 15, 40 (2020). (PMID: 32677986736455710.1186/s13024-020-00391-7)
de la Torre, J. C. Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33, 1152–1162 (2002). (PMID: 1193507610.1161/01.STR.0000014421.15948.67)
Whitmer, R. A., Karter, A. J., Yaffe, K., Quesenberry, C. P. Jr. & Selby, J. V. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 301, 1565–1572 (2009). (PMID: 19366776278262210.1001/jama.2009.460)
Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011). (PMID: 22048062403652010.1038/nrn3114)
Di Marco, L. Y., Farkas, E., Martin, C., Venneri, A. & Frangi, A. F. Is vasomotion in cerebral arteries impaired in Alzheimer’s disease? J. Alzheimers Dis. 46, 35–53 (2015). (PMID: 25720414487830710.3233/JAD-142976)
Nguyen, B., Bix, G. & Yao, Y. Basal lamina changes in neurodegenerative disorders. Mol. Neurodegener. 16, 81 (2021). (PMID: 34876200865028210.1186/s13024-021-00502-y)
Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. a meta-analysis. apoe and Alzheimer disease meta analysis consortium. JAMA 278, 1349–1356 (1997). (PMID: 934346710.1001/jama.1997.03550160069041)
Hyman, B. T. et al. Apolipoprotein E and cognitive change in an elderly population. Ann. Neurol. 40, 55–66 (1996). (PMID: 868719310.1002/ana.410400111)
Castellano, J. M. et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci. Transl. Med 3, 89ra57 (2011). (PMID: 21715678319236410.1126/scitranslmed.3002156)
Reiman, E. M. et al. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 106, 6820–6825 (2009). (PMID: 19346482266519610.1073/pnas.0900345106)
Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013). (PMID: 23296339372671910.1038/nrneurol.2012.263)
Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012). (PMID: 22622580404711610.1038/nature11087)
Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019). (PMID: 31367008705519210.1038/s41582-019-0228-7)
Williams, T., Borchelt, D. R. & Chakrabarty, P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol. Neurodegener. 15, 8 (2020). (PMID: 32005122699517010.1186/s13024-020-0358-9)
Linton, M. F. et al. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J. Clin. Invest. 88, 270–281 (1991). (PMID: 205612229602910.1172/JCI115288)
Lane-Donovan, C. et al. Genetic restoration of plasma ApoE improves cognition and partially restores synaptic defects in ApoE-deficient mice. J. Neurosci. 36, 10141–10150 (2016). (PMID: 27683909503925810.1523/JNEUROSCI.1054-16.2016)
Martinez-Morillo, E. et al. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol. 127, 633–643 (2014). (PMID: 2463380510.1007/s00401-014-1266-2)
Tai, L. M. et al. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol. 131, 709–723 (2016). (PMID: 26884068483701610.1007/s00401-016-1547-z)
Haan, M. N., Shemanski, L., Jagust, W. J., Manolio, T. A. & Kuller, L. The role of APOE ∊4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA 282, 40–46 (1999). (PMID: 1040491010.1001/jama.282.1.40)
Liu, C. C. et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron 96, 1024–1032 (2017). (PMID: 29216449594810510.1016/j.neuron.2017.11.013)
Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227 (2012). (PMID: 2318762710.1038/ncomms2230)
Fukuda, E. et al. Down-regulation of protocadherin-alpha A isoforms in mice changes contextual fear conditioning and spatial working memory. Eur. J. Neurosci. 28, 1362–1376 (2008). (PMID: 1897356310.1111/j.1460-9568.2008.06428.x)
Siddiqui, M. R., Mayanil, C. S., Kim, K. S. & Tomita, T. Angiopoietin-1 regulates brain endothelial permeability through PTPN-2 mediated tyrosine dephosphorylation of occludin. PLoS ONE 10, e0130857 (2015). (PMID: 26090670447480710.1371/journal.pone.0130857)
Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010). (PMID: 21040844305640810.1016/j.neuron.2010.09.043)
Sheng, J. & Xu, Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim. Biophys. Sin. 48, 399–410 (2016). (PMID: 2670514110.1093/abbs/gmv131)
Subramanian, A. et al. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 16199517123989610.1073/pnas.0506580102)
Baeten, K. M. & Akassoglou, K. Extracellular matrix and matrix receptors in blood–brain barrier formation and stroke. Dev. Neurobiol. 71, 1018–1039 (2011). (PMID: 21780303348261010.1002/dneu.20954)
Song, W. M. & Zhang, B. Multiscale embedded gene coexpression network analysis. PLoS Comput Biol. 11, e1004574 (2015). (PMID: 26618778466455310.1371/journal.pcbi.1004574)
Pearson-Leary, J. et al. Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl. Psychiatry 7, e1160 (2017). (PMID: 28654094553764310.1038/tp.2017.122)
Piskunov, A. et al. Chronic combined stress induces selective and long-lasting inflammatory response evoked by changes in corticosterone accumulation and signaling in rat hippocampus. Metab. Brain Dis. 31, 445–454 (2016). (PMID: 2678008710.1007/s11011-015-9785-7)
Nelimarkka, L. et al. Decorin is produced by capillary endothelial cells in inflammation-associated angiogenesis. Am. J. Pathol. 158, 345–353 (2001). (PMID: 11159170185030710.1016/S0002-9440(10)63975-2)
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018). (PMID: 2944396510.1038/nature25739)
Chen, M. B. et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30, 4418–4432 (2020). (PMID: 32234477729256910.1016/j.celrep.2020.03.012)
Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med 10, 858–864 (2004). (PMID: 1523559710.1038/nm1075)
Noubade, R. et al. von-Willebrand factor influences blood–brain barrier permeability and brain inflammation in experimental allergic encephalomyelitis. Am. J. Pathol. 173, 892–900 (2008). (PMID: 18688020252628810.2353/ajpath.2008.080001)
Fan, D. & Kassiri, Z. Biology of tissue inhibitor of metalloproteinase 3 (TIMP3), and its therapeutic implications in cardiovascular pathology. Front Physiol. 11, 661 (2020). (PMID: 32612540730855810.3389/fphys.2020.00661)
Dewing, J. M., Carare, R. O., Lotery, A. J. & Ratnayaka, J. A. The diverse roles of TIMP3-3: insights into degenerative diseases of the senescent retina and brain. Cells 9, 39 (2019). (PMID: 701723410.3390/cells9010039)
Eckhouse, S. R. et al. Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci. Transl. Med 6, 223ra221 (2014). (PMID: 10.1126/scitranslmed.3007244)
Middeldorp, J. et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. 73, 1325–1333 (2016). (PMID: 27598869517259510.1001/jamaneurol.2016.3185)
Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med 20, 659–663 (2014). (PMID: 24793238422443610.1038/nm.3569)
Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159–170 (2004). (PMID: 1464520510.1093/hmg/ddh019)
Liu, C. C. et al. Neuronal heparan sulfates promote amyloid pathology by modulating brain amyloid-beta clearance and aggregation in Alzheimer’s disease. Sci. Transl. Med. 8, 332ra344 (2016).
Hawkes, C. A. et al. Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE ε4 allele. PLoS ONE 7, e41636 (2012). (PMID: 22848551340498510.1371/journal.pone.0041636)
Holtzman, D. M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 97, 2892–2897 (2000). (PMID: 106945771602610.1073/pnas.050004797)
Ulrich, J. D. et al. ApoE facilitates the microglial response to amyloid plaque pathology. J. Exp. Med. 215, 1047–1058 (2018). (PMID: 29483128588146410.1084/jem.20171265)
Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015). (PMID: 25792098590970310.1016/S1474-4422(15)70016-5)
Bulgart, H. R., Neczypor, E. W., Wold, L. E. & Mackos, A. R. Microbial involvement in Alzheimer disease development and progression. Mol. Neurodegener. 15, 42 (2020). (PMID: 32709243738213910.1186/s13024-020-00378-4)
Pluvinage, J. V. & Wyss-Coray, T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat. Rev. Neurosci. 21, 93–102 (2020). (PMID: 3191335610.1038/s41583-019-0255-9)
Boada, M. et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR study. Alzheimers Dement. 16, 1412–1425 (2020). (PMID: 32715623798426310.1002/alz.12137)
Nielsen, H. M. et al. Peripheral apoE isoform levels in cognitively normal APOE ε3/ε4 individuals are associated with regional gray matter volume and cerebral glucose metabolism. Alzheimers Res. Ther. 9, 5 (2017). (PMID: 28137305528290010.1186/s13195-016-0231-9)
Stohr, R. et al. Loss of TIMP3 exacerbates atherosclerosis in ApoE null mice. Atherosclerosis 235, 438–443 (2014). (PMID: 2494322310.1016/j.atherosclerosis.2014.05.946)
Thevenard, J. et al. Low-density lipoprotein receptor-related protein-1 mediates endocytic clearance of tissue inhibitor of metalloproteinases-1 and promotes its cytokine-like activities. PLoS ONE 9, e103839 (2014). (PMID: 25075518411622810.1371/journal.pone.0103839)
Markiewski, M. M. & Lambris, J. D. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am. J. Pathol. 171, 715–727 (2007). (PMID: 17640961195948410.2353/ajpath.2007.070166)
Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019). (PMID: 30643288636705810.1038/s41591-018-0297-y)
Hussain, B., Fang, C. & Chang, J. Blood–brain barrier breakdown: an emerging biomarker of cognitive impairment in normal aging and dementia. Front Neurosci. 15, 688090 (2021). (PMID: 34489623841830010.3389/fnins.2021.688090)
Merlini, M. et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 101, 1099–1108 (2019). (PMID: 30737131660253610.1016/j.neuron.2019.01.014)
Cortes-Canteli, M. et al. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron 66, 695–709 (2010). (PMID: 20547128289577310.1016/j.neuron.2010.05.014)
Tan, Y. et al. 7,8-Dihydroxyflavone ameliorates cognitive impairment by inhibiting expression of tau pathology in ApoE-knockout mice. Front. Aging Neurosci. 8, 287 (2016). (PMID: 27965573512646610.3389/fnagi.2016.00287)
Hartman, R. E. et al. Behavioral phenotyping of GFAP-apoE3 and -apoE4 transgenic mice: apoE4 mice show profound working memory impairments in the absence of Alzheimer’s-like neuropathology. Exp. Neurol. 170, 326–344 (2001). (PMID: 1147659910.1006/exnr.2001.7715)
Kim, J. et al. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J. Exp. Med. 209, 2149–2156 (2012). (PMID: 23129750350135010.1084/jem.20121274)
Liao, F. et al. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J. Neurosci. 34, 7281–7292 (2014). (PMID: 24849360402850110.1523/JNEUROSCI.0646-14.2014)
Huynh, T. V. et al. Lack of hepatic apoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Mol. Neurodegener. 14, 37 (2019). (PMID: 31623648679648410.1186/s13024-019-0337-1)
Miyazaki, S., Miyazaki, T., Tashiro, F., Yamato, E. & Miyazaki, J. Development of a single-cassette system for spatiotemporal gene regulation in mice. Biochem. Biophys. Res. Commun. 338, 1083–1088 (2005). (PMID: 1625695010.1016/j.bbrc.2005.10.054)
Chakrabarty, P. et al. IFN-γ promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J. Immunol. 184, 5333–5343 (2010). (PMID: 2036827810.4049/jimmunol.0903382)
Liu, C. C. et al. APOE3-Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Sci. Transl. Med. 13, eabc9375 (2021). (PMID: 34586832882472610.1126/scitranslmed.abc9375)
Drew, P. J., Blinder, P., Cauwenberghs, G., Shih, A. Y. & Kleinfeld, D. Rapid determination of particle velocity from space-time images using the Radon transform. J. Comput. Neurosci. 29, 5–11 (2010). (PMID: 1945903810.1007/s10827-009-0159-1)
Zhao, J. et al. Retinoic acid isomers facilitate apolipoprotein E production and lipidation in astrocytes through the retinoid X receptor/retinoic acid receptor pathway. J. Biol. Chem. 289, 11282–11292 (2014). (PMID: 24599963403626610.1074/jbc.M113.526095)
Liu, C. C. et al. Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer’s disease. Neuron 84, 63–77 (2014). (PMID: 25242217419938210.1016/j.neuron.2014.08.048)
Rogers, J. T. et al. Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice. Neurobiol. Aging 53, 112–121 (2017). (PMID: 28254590538526910.1016/j.neurobiolaging.2017.02.001)
Liu, C. C. et al. Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer’s disease. Alzheimers Dement. 16, 1372–1383 (2020). (PMID: 32827351810395110.1002/alz.12104)
Kalari, K. R. et al. MAP-RSeq: Mayo analysis pipeline for RNA sequencing. BMC Bioinformatics 15, 224 (2014). (PMID: 24972667422850110.1186/1471-2105-15-224)
Hansen, K. D., Irizarry, R. A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204–216 (2012). (PMID: 22285995329782510.1093/biostatistics/kxr054)
Piedrahita, J. A., Zhang, S. H., Hagaman, J. R., Oliver, P. M. & Maeda, N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl Acad. Sci. USA 89, 4471–4475 (1992). (PMID: 15847794910410.1073/pnas.89.10.4471)
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). (PMID: 19114008263148810.1186/1471-2105-9-559)
Yamazaki, A. et al. Preparation of single-cell suspensions enriched in mouse brain vascular cells for single-cell RNA sequencing. STAR Protoc. 2, 100715 (2021). (PMID: 34401781835335710.1016/j.xpro.2021.100715)
Yamazaki, Y. et al. Vascular ApoE4 impairs behavior by modulating gliovascular function. Neuron 109, 438–447 (2021). (PMID: 3332107210.1016/j.neuron.2020.11.019)
Heo, J. et al. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 44, 1478–1486 (2006). (PMID: 1713348610.1002/hep.21441)
Hu, J. et al. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice. Mol. Neurodegener. 10, 6 (2015). (PMID: 25871773435613710.1186/s13024-015-0001-3)
Dey, K. K. et al. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin. Proteomics 16, 16 (2019). (PMID: 31019427647202410.1186/s12014-019-9237-1)
Wang, H. et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol. Neurodegener. 15, 43 (2020). (PMID: 32711556738214810.1186/s13024-020-00384-6)
Xu, P., Duong, D. M. & Peng, J. M. Systematical optimization of reverse-phase chromatography for shotgun proteomics. J. Proteome Res. 8, 3944–3950 (2009). (PMID: 19566079274947610.1021/pr900251d)
Wang, Z. et al. 27-plex tandem mass tag mass spectrometry for profiling brain proteome in Alzheimer’s disease. Anal. Chem. 92, 7162–7170 (2020). (PMID: 32343560817640210.1021/acs.analchem.0c00655)
Wang, Z. et al. High-throughput and deep-proteome profiling by 16-plex tandem mass tag labeling coupled with two-dimensional chromatography and mass spectrometry. J. Vis. Exp. e61684 (2020).
Wang, X. et al. JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol. Cell. Proteomics 13, 3663–3673 (2014). (PMID: 25202125425651310.1074/mcp.O114.039586)
Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. & Gygi, S. P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50 (2003). (PMID: 1264354210.1021/pr025556v)
Niu, M. et al. Extensive peptide fractionation and Y1 ion-based interference detection method for enabling accurate quantification by isobaric labeling and mass spectrometry. Anal. Chem. 89, 2956–2963 (2017). (PMID: 28194965546744510.1021/acs.analchem.6b04415)
Qian, T. et al. Directed differentiation of human pluripotent stem cells to blood–brain barrier endothelial cells. Sci. Adv. 3, e1701679 (2017). (PMID: 29134197567735010.1126/sciadv.1701679)
معلومات مُعتمدة: P30 CA016672 United States CA NCI NIH HHS; RF1 AG054014 United States AG NIA NIH HHS; U01 AG052411 United States AG NIA NIH HHS; U01 AG046170 United States AG NIA NIH HHS; RF1 AG062110 United States AG NIA NIH HHS; R37 AG027924 United States AG NIA NIH HHS; RF1 AG046205 United States AG NIA NIH HHS; U19 AG069701 United States AG NIA NIH HHS; RF1 AG057181 United States AG NIA NIH HHS; R21 AG057981 United States AG NIA NIH HHS
المشرفين على المادة: 0 (Apolipoprotein E3)
0 (Apolipoprotein E4)
0 (Apolipoproteins E)
0 (Protein Isoforms)
تواريخ الأحداث: Date Created: 20220801 Date Completed: 20220803 Latest Revision: 20240503
رمز التحديث: 20240503
مُعرف محوري في PubMed: PMC10009873
DOI: 10.1038/s41593-022-01127-0
PMID: 35915180
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1726
DOI:10.1038/s41593-022-01127-0